

City of Coral Gables Planning and Zoning Staff Report

Property: Riviera Plaza (1542 South Dixie Highway)

Applicant: Riviera Plaza Holdings LP

Application: Alley Vacation

Public Hearing: Planning and Zoning Board

Date & Time: July 12, 2017; 6:00 – 9:00 p.m.

Location: City Commission Chambers, City Hall,

405 Biltmore Way, Coral Gables, Florida 33134

1. APPLICATION REQUEST

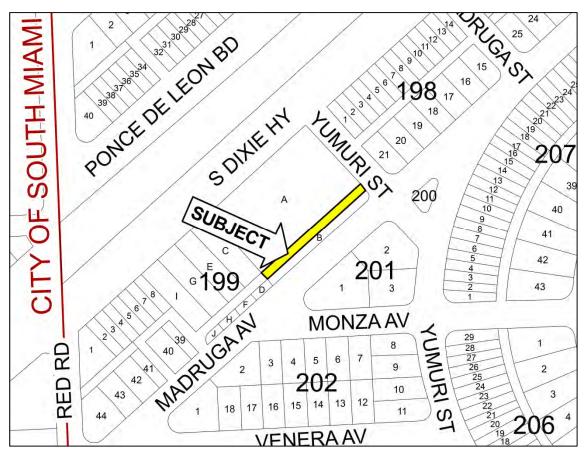
Application request is for an Alley Vacation for the property referred to as "Riviera Plaza" located at 1542 South Dixie Highway. The Ordinance under consideration is as follows:

An Ordinance of the City Commission of Coral Gables requesting vacation of a public alleyway pursuant to Zoning Code Article 3, Division 12, "Abandonment and Vacations" and City Code Chapter 62, Article 8, "Vacation, Abandonment and Closure of Streets, Easements and Alleys by Private Owners and the City; Application Process," providing for the vacation of the twenty (20) foot wide alley which is three-hundred (300) feet in length lying between Tracts A and B, Block 199, Riviera Section Part 14, Coral Gables, Florida; providing for an effective date.

An application for abandonment and vacation requires review and recommendation by the Planning and Zoning Board at one (1) public hearing, and consideration by the City Commission at two (2) public hearings (Ordinance format).

2. APPLICATION SUMMARY

Riviera Plaza Holdings LP (hereinafter referred to as the "Applicant") has submitted an application for vacation of an alley in connection with the proposed construction of a new supermarket / retail building (hereinafter referred to as the "Project") to be located at 1542 South Dixie Highway (herein referred to as the "Property"). The Property is approximately 64,000 square feet in size and is bisected by an alley at the rear of the Property. The Property lies south of South Dixie Highway with Yumuri Street to the northeast and Madruga Avenue to the southeast. The application package submitted by the Applicant is provided as Attachment A.


The Applicant is requesting approval to vacate, abandon, and close a portion of the alley that presently runs through the Property, from Yumuri Street on the east to the boundary line of Tracts A and B approximately 300 feet to the west (hereinafter referred to as the "Alley"). The Applicant intends to

provide an alternative access easement that will connect to what will remain of the Alley on the property to the west to Madruga Avenue. The vacation of this portion of the Alley is necessary to consolidate the building site. The Project's height, setback, and floor area are all permitted by the existing zoning.

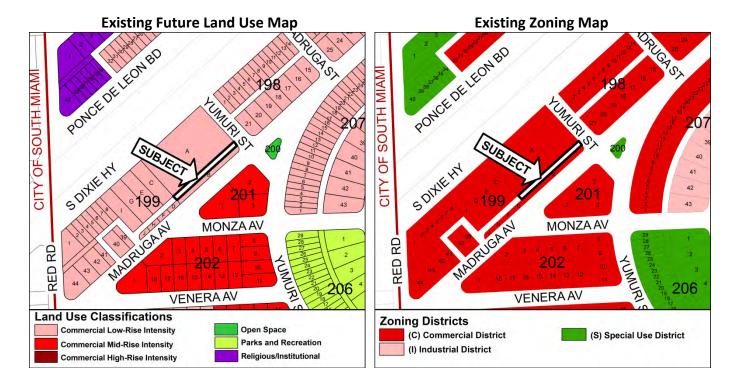
The Alley has little benefit to the public as it does not connect two thoroughfares. Historically, the Alley was centrally located in Block 199 as envisioned by George Merrick. However, the Alley has since been relocated and is currently utilized as a driveway for the existing surface parking lot. The Project will offset any potential impacts which may be caused by the requested vacation by internalizing all service and loading functions within the proposed new building and by providing structured parking. The Project will also feature a more pedestrian-friendly, aesthetically-pleasing, and a public access easement which will continue to connect the remaining portion of the alley to Madruga Avenue.

The Applicant proposes to demolish the existing two-story structure and to construct a new 74,340 square foot supermarket and separate ground floor retail spaces on the approximately 1.5 acre site. The property is legally described as the tracts "A" and "B" of replat of a portion of Block 199 Coral Gables Riviera Section Part 14, Coral Gables, Florida, and is shown on the following location map:

Location Map

Property Designations and Surrounding Uses

The following tables provide the subject property's designations and surrounding land uses:


Existing Property Designations

Comprehensive Plan Future Land Use Map designation	Commercial, Low-Rise
	Intensity
Zoning Map designation	Commercial (C) District

Surrounding Land Uses

Location	Existing Land Uses	CP Designations	Zoning Designations
North	One (1) story commercial	Commercial, Low-Rise	Commercial (C) District
	building	Intensity	
South	One (1) story commercial	Commercial, Low-Rise	Commercial (C) District
	building	Intensity	
East	Four (4) story commercial	Commercial, Mid-Rise	Commercial (C) District
	building	Intensity	
West	One (1) story commercial	Commercial, Low-Rise	Commercial (C) District
	building	Intensity	

The subject property currently has the existing land use and zoning designations, as illustrated in the following maps:

City Review Timeline

The submitted application has undergone the following City reviews:

Type of Review	Date
Development Review Committee	01.27.17
Board of Architects	04.13.17
Historic Preservation Board	N/A
Planning and Zoning Board	07.12.17
City Commission	TBD

3. FINDINGS OF FACT

This section of the report presents City Staff's evaluation of the Application and Findings of Facts. The City's responsibility is to review the Application for consistency with the City's Comprehensive Plan (CP) Goals, Objectives and Policies and compliance with the Zoning Code and City Code.

Alley Vacation

City Code Chapter 62, Article VIII, "Vacation, Abandonment and Closure of Streets, Easements and Alleys by Private Owners and the City; Application Process" requires that the Public Works Department shall review all applications for the vacation of a public right-of-way in accordance with criteria set forth in City Code Sections 62-259 and 62-262, and shall provide a recommendation to the Planning and Zoning Board.

Zoning Code, Article 3, Division 12, Section 3-1203, "Standards for review" provides the standards for review for the proposed vacations, abandonment or closure of public streets and alleyways. Review and recommendation is required by both the Public Works Department and the Development Review Committee (DRC), which is forwarded to the Planning and Zoning Board. The proposal was presented to the DRC at a meeting held on 01.27.17. Both the Public Works Department and DRC had no objection and supported this proposal.

Pursuant to the City Code requirements, the Public Works Department recommends approval of the proposed alley vacation, subject to all of the following conditions:

- 1. The applicant grants to the City by Deed of Dedication absolute rights of public ingress and egress and of all utilities whatever interests they need.
- 2. That all vehicle turning radius be adequate for all vehicles that would normally or occasionally use the alley.
- 3. That a vertical clearance of sixteen feet (16') extending the full length and width of the easement should be provided.
- 4. Applicant is responsible for the relocation of the existing utilities in the proposed alley to be vacated in accordance to the requirements of the affected utility companies including the City's gravity sanitary sewer line.

- 5. Applicant must seek Commission approval and provide fully executed hold harmless agreement or restrictive covenant for all proposed encroachments into, onto, under and over the City's rights-of-way.
- 6. Applicant must seek Florida Department of Transportation approval and for proposed improvements on or affecting South Dixie Highway.

The full report and recommendation is provided as Attachment B.

The standards provided in Zoning Code Section 3-1203, "Standards for review" and the Applicant's response to each standard is as follows:

"The Zoning Code specifies that applications for the abandonment and vacation of public streets, alleyways and other non-fee interests may be approved provided the following is demonstrated:

STANDARD FOR REVIEW STAFF FINDING Provides some benefit to the public The alley is not currently being used for its intended purpose. It health, safety, welfare, or is serving as a driveway for the parking area of the existing retail convenience, but the overall benefit shopping center. The project is designed so that delivery of anticipated to result from the goods and services, trash pick-up and vehicular circulation are maintained and conducted internal to the structure, or within abandonment outweighs the specific benefit derived from the non-fee enclosed service bays. property interest, in that the vacation or abandonment will not frustrate any comprehensive plan, special purpose plan, or capital improvement program of the City. The vacation or abandonment will The City does not have any planning effort underway that not interfere with any planning identifies this alleyway for future use. effort of the City that is underway at the time of the application but is not yet completed. The vacation or abandonment will The alley vacation is part of The Riviera Plaza project. This will provide a material public benefit in be the addition of a modern supermarket to this area of the terms of promoting the desired city. The Project will internalize the traditional functions of an development and improves the alley, including service and loading functions, as well as by City's long-term fiscal condition and providing structured parking and a public access easement to the applicant provides beneficial connect the remaining portion of the alley to Madruga Avenue. mitigation in the form of a proffered mitigation plan which mitigates the loss of real property, the increase in the intensity of use and/or impacts on the public health, safety and welfare including increased parking and traffic."

Consistency Evaluation of the Comprehensive Plan (CP) Goals, Objectives and Policies

This section provides those CP Goals, Objectives and Policies applicable to the Application and the determination of consistency:

DE-	I	CT 4 ==
REF.	COMPREHENSIVE PLAN GOAL, OBJECTIVE AND POLICY	STAFF
NO.		REVIEW
1.	Goal FLU-1. Protect, strengthen, and enhance the City of Coral Gables as a vibrant community ensuring that its neighborhoods, business opportunities, shopping, employment centers, cultural activities, historic value, desirable housing, open spaces, and natural	Complies
	resources make the City a very desirable place to work, live and play.	
2.	Objective FLU-1.1. Preserve Coral Gables as a "placemaker" where the balance of existing and future uses is maintained to achieve a high quality living environment by encouraging compatible land uses, restoring and protecting the natural environment, and providing facilities and services which meet or exceed the minimum Level of Service (LOS) standards and meet the social and economic needs of the community through the Comprehensive Plan and Future Land Use Classifications and Map (see FLU-1: Future Land Use Map).	Complies
3.	Objective FLU-1.2. Efforts shall continue to be made to control blighting influences, and redevelopment shall continue to be encouraged in areas experiencing deterioration.	Complies
4.	Policy FLU-1.3.3. Non-residential uses designated in the Comprehensive Plan which cause significant noise, light, glare, odor, vibration, dust, hazardous conditions or industrial traffic, shall provide buffering such as landscaping, walls and setbacks, when located adjacent to or across the street from incompatible uses such as residential uses.	Complies
5 .	Policy FLU-1.11.1. Maintain and enforce effective development and maintenance regulations through site plan review, code enforcement, and design review boards and committees.	Complies
6.	Goal DES-1. Maintain the City as a livable city, attractive in its setting and dynamic in its urban character.	Complies
7.	Objective DES-1.1. Preserve and promote high quality, creative design and site planning that is compatible with the City's architectural heritage, surrounding development, public spaces and open spaces.	Complies
8.	Policy DES-1.1.5. Promote the development of property that achieves unified civic design and proper relationship between the uses of land both within zoning districts and surrounding districts, by regulating, limiting and determining the location, height, density, bulk and massing, access to light and air, area of yards, open space, vegetation and use of buildings, signs and other structures.	Complies
9.	Policy DES-1.1.6. Maintain the character of the residential and nonresidential districts, and their peculiar suitability for particular uses.	Complies
10.	Policy DES-1.2.1. Continue the award of development bonuses and/or other incentives to promote Coral Gables Mediterranean design character providing for but not limited to the	Complies

REF. NO.	COMPREHENSIVE PLAN GOAL, OBJECTIVE AND POLICY following: creative use of architecture to promote public realm improvements and pedestrian amenities; provide a visual linkage between contemporary architecture and the existing and new architectural fabric; encourage landmark opportunities; and creation of public open spaces.	STAFF REVIEW
11.	Policy DES-1.2.2. Require that private development and public projects are designed consistent with the City's unique and historical Mediterranean appearance in balance with contemporary architecture.	Complies
12.	Objective MOB-1.1. Provide solutions to mitigate and reduce the impacts of vehicular traffic on the environment, and residential streets in particular with emphasis on alternatives to the automobile including walking, bicycling, public transit and vehicle pooling.	Complies
13.	Policy MOB-1.1.2. Encourage land use decisions that encourage infill, redevelopment and reuse of vacant or underutilized parcels that support walking, bicycling and public transit use.	Complies
14.	Policy MOB-1.1.4. Support incentives that promote walking, bicycling and public transit and those that improve pedestrian and bicycle access to/and between local destinations such as public facilities, governmental facilities, schools, parks, open space, employment centers, downtown, commercial centers, high concentrations of residential, private/public schools, University of Miami and multimodal transit centers/stations.	Complies
15.	Policy MOB-1.1.5. Improve amenities within public spaces, streets, alleys and parks to include the following improvements: seating; art; architectural elements (at street level); lighting; bicycle parking; street trees; improved pedestrian crossing with bulb-outs, small curb radii, on-street parking along sidewalks, pedestrian paths and bicycle paths to encourage walking and cycling with the intent of enhancing the feeling of safety.	Complies

Staff Comments: Staff's determination that this application is "consistent" with the CP Goals, Objectives and Policies that are identified is based upon compliance with conditions of approval recommended by Staff, and proffered by the Applicant.

4. PUBLIC NOTIFICATION

The Applicant completed the mandatory neighborhood meeting with notification to all property owners within 1,000 feet of the property boundary. A meeting was held by the Applicant with the property owners on 06.20.17.

The Zoning Code requires that a courtesy notification be provided to all property owners within 1,000 feet of the boundary of the property. The notice indicates the following: Application filed; public hearing dates/time/location; where the application files can be reviewed and provides for an opportunity to submit comments. Approximately 396 notices were mailed. A copy of the legal

advertisement and courtesy notice are provided as Attachments C and D. A map of the notice radius is as follows:

Courtesy Notification Radius Map

The following has been completed to solicit input and provide notice of the application:

Public Notice

Туре	Date
Public information meeting	06.20.17
Courtesy notification - 1,000 feet	06.30.17
Posting of property	06.30.17
Legal advertisement	06.29.17
Posted agenda on City web page/City Hall	07.07.17
Posted Staff report on City web page	07.07.17

5. STAFF RECOMMENDATION

The Planning and Zoning Division based upon the complete Findings of Fact contained within this Report recommends **approval** of the Application with conditions.

Summary of the Basis for Approval

As enumerated in the Findings of Fact contained herein, Staff finds the Application is in compliance with the Comprehensive Plan, Zoning Code and other applicable City Codes, subject to the identified conditions of approval.

Conditions of Approval

In furtherance of the Comprehensive Plan (CP) Goals, Objectives and Policies, Zoning Code and other applicable City provisions, the recommendation for approval of the Application is subject to the following conditions of approval:

The applicant, its successors or assigns, shall adhere to the following conditions:

- 1. Further refinement of ground floor on Madruga Avenue to minimize loading driveway and roll up door on sidewalk and façade.
- 2. Update arcade design to ensure a minimum of 10' horizontal clearance for a pedestrian path along the entire length of the arcade. Twelve feet horizontal clearance is preferred.
- 3. Further refinement of north elevation to incorporate architectural details above parking entrance on Yumuri Street.

6. ATTACHMENTS

- A. Applicant's submittal package.
- B. 06.28.17 Public Works Alley Vacation Report and Recommendation.
- C. 06.29.17 Legal notice.
- D. 06.30.17 Courtesy notice mailed to all property owners within 1,000 feet.

Please visit the City's webpage at www.coralgables.com to view all application materials. The complete application also is on file and available for examination during business hours at the Planning and Zoning Division, 427 Biltmore Way, Suite 201, Coral Gables, Florida, 33134.

Respectfully submitted,

Ramon Trias

Director of Planning and Zoning City of Coral Gables, Florida

Planning and Zoning Board Application

Riviera Plaza

1542 South Dixie Highway Coral Gables, FL 33146

Riviera Plaza / 1542 South Dixie Highway Planning and Zoning Board Application

Application	Tab 1
Statement of Use	Tab 2
Survey, Site Map, Aerial, Floor Plans, Elevations, and Landscape Plan	Tab 3
Traffic Impact Study	Tab 4
Contact Information	Tab 5
Historical Significance Determination	Tab 6
Deed	Tab 7
Plat	Tab 8
Ordinances and Resolutions	Tab 9
Waivers of Objection	Tab 10

305.460.5211

planning@coralgables.com

www.coralgables.com

Application request

Street address Property/proje Legal description Block(s) 199	of the subject property: 1542 South Dect name: Riviera Plaza on: Lot(s) Tracts "A" and "B" er(s): Riviera Plaza Holdings LP	Dixie Highway Section (s) Coral Gables		
Street address Property/proje Legal description	of the subject property: 1542 South Dect name: Riviera Plaza on: Lot(s) Tracts "A" and "B"			
Street address Property/proje Legal description	of the subject property: 1542 South Dect name: Riviera Plaza on: Lot(s) Tracts "A" and "B"			
Street address Property/proje	of the subject property: 1542 South Dect name: Riviera Plaza			
Street address	of the subject property: 1542 South D			
		Dixie Highway		
General	information			
Other:				
_	e Text Amendment			
Zoning Code	e Map Amendment			
University C	Campus District Modification to the Ad	dopted Campus Master	Plan	
☐ Transfer of	Development Rights Receiving Site Pl	an		
•	Review for a Tentative Plat and Varia	ince		
 ☐ Separation/	Establishment of a Building Site			
☐ Site Plan	20.00.000			
	Covenants and/or Easements			
	ea Development Major Amendment	riaii		
	ea Development Designation and Site	Plan		
☐ Developme		Joseu Change		
·	nt of Regional Impact nt of Regional Impact - Notice of Prop	oced Change		
☐ Developme	•			
_	Use with Site Plan			
	Use without Site Plan			
	Use - Administrative Review			
	sive Plan Text Amendment			
·	sive Plan Map Amendment - Large Sc	cale		
	sive Plan Map Amendment - Small Sc			
Coral Gable	s Mediterranean Architectural Desigr	n Special Locational Site	Plan	
\square Annexation				
M / Nouridonnine	ent and Vacations			
	cation(s) (please check all that apply)	•		

Applicant(s)/	agent(s): Mario Garcia-Serra			
Applicant(s)/	agent(s) mailing address: 600 Brickell	Avenue, Suite 3500, Miami, F	-L 33131	
Telephone:	Business <u>305-376-6061</u>	Fax		
	Other	Email	mgarcia-serra	@ gunster.com
Proper	ty information			
Current land	use classification(s): Commercial Low	-Rise Intensity		
Current zonir	ng classification(s): Commercial			
Proposed lan	d use classification(s) (if applicable):	N/A		
	ning classification(s) (if applicable): N			
Suppor	ting information (to	be completed b	y Planning	; Staff)
Handbook, Se	necessary to be filed with the applicate ection 3.0, for an explanation of each wes the right to request additional info	item. If necessary, attach	additional sheets	to application. The Planning
·	providing for property owner's autho on supporting materials. on fees.	rization to process applicat	tion.	
☐ Applicatio ☐ Appraisal.	n representation and contact inform	ation.		
	ral/building elevations.			
☐ Building fl	oor plans. ensive Plan text amendment justifica	tion		
_	ensive Plan analysis.	tion.		
	ncy impact statement.			
☐ Encroachr	nents plan.			
_	ental assessment.			
	ontextual study and/or historical sign	ificance determination.		
Landscape	·			
Lighting pl				
	nodel and/or 3D computer model.			
	ral Gables Annual Registration Applic			
	es, resolutions, covenants, developm	ent agreements, etc. previ	ously granted for t	he property.
Parking st	•			
	ohs of property, adjacent uses and/o	r streetscape.		
☐ Plat.	and the state of the			
□ Property s	survey and legal description.			

Property owners list, notification radius map and two sets of labels.
☐ Public Realm Improvements Plan for mixed use projects.
☐ Public school preliminary concurrency analysis (residential land use/zoning applications only).
Sign master plan.
☐ Site plan and supporting information.
☐ Statement of use and/or cover letter.
☐ Streetscape master plan.
☐ Traffic accumulation assessment.
☐ Traffic impact statement.
☐ Traffic impact study.
☐ Traffic stacking analysis.
Utilities consent.
Utilities location plan.
☐ Vegetation survey.
☐ Video of the subject property.
☐ Zoning Analysis (Preliminary).
☐ Zoning Code text amendment justification.
☐ Warranty Deed.
Other:

Application submittal requirements

- 1. Hard copies. The number of application binders to be submitted shall be determined by Staff at the preapplication meeting. The application shall include all the items identified in the preappplication meeting.
- 2. Digital media copies. Two (2) compact discs (CD ROMs) of the entire application including all the items identified in the Preapplication Conference. Each document shall be separated into PDF files (i.e., application; site plan, landscape plan; etc.). Please include a "Table of Contents" identifying all PDF file name(s). Each PDF file size shall not exceed 10 Mb. All discs shall be labeled with the applicant(s) name, project name and date of submittal.

Applicant/agent/property owner affirmation and consent

(I) (We) affirm and certify to all of the following:

- 1. Submission of the following:
 - a. Warranty deed/tax record as proof of ownership for all properties considered as a part of the application request; or
 - b. Authorized as the applicant(s)/agent(s) identified herein to file this application and act on behalf of all current property owner(s) and modify any valid City of Coral Gables entitlements in effect during the entire review process.
- 2. This request, application, application supporting materials and all future supporting materials complies with all provisions and regulations of the Zoning Code, Comprehensive Land Use Plan and Code of Ordinances of the City of Coral Gables unless identified and approved as a part of this application request or other previously approved applications. Applicant understands that any violation of these provisions renders the application invalid.
- 3. That all the information contained in this application and all documentation submitted herewith is true to the best of (my) (our) knowledge and belief.
- 4. Understand that the application, all attachments and fees become a part of the official records of the City of Coral Gables and are not returnable.

- 5. Failure to provide the information necessary pursuant to the established time frames included but not limited to application submittal, submission of revised documents, etc. for review by City Staff and the designated reviewing entity may cause application to be deferred without further review until such time the requested information is submitted.
- 6. All representatives of the application have registered with and completed lobbyist forms for the City of Coral Gables City Clerk's office.
- 7. Understand that under Florida Law, all the information submitted as part of the application are public records.
- 8. Additional costs in addition to the application fees may be assessed associated with the review of applications by the City. These are costs that may be incurred by the applicant due to consultant fees paid by City to review the application. The types of reviews that could be conducted may include but are not limited to the following: property appraisals; traffic impact analyses; vegetation/environmental assessments; archeological/historic assessments; market studies; engineering studies or reports; and legal fees. Such fees will be assessed upon finalization of the City application review.

Property owner(s) signature(s):			owner(s) print name: Karsenti, Riviera Plaza Holdings LP
Property owner(s) signature(s):		Property o	owner(s) print name:
Property owner(s) signature(s):		Property o	owner(s) print name:
Address: 848 Brickell Avenue, PH	1, Miami, FL 33131		
Telephone: 786-220-0460	Fax:		Email: akarsenti@13fi.com
	NOTARIZ	ATION	
STATE OF FLORIDA/COUNTY OF The foregoing instrument was acknowle (Signature of Notary Public - State of Flo	dged before me this rida)	<u> </u>	of FERNARY by 2017 ARNAUD KARSEN
Elisa Seguin Commission # FF97 Expires: March 24, Bonded thru Aaron	75191 2020	E	PUSA SEGUIN
(Print, Type or Stamp Commissioned Na Personally Known OR Produced Io			on Produced

		Contract I	Purchaser(s) Print Name:
Contract Purchaser(s) Signature:		Contract I	Purchaser(s) Print Name:
Address:			
Telephone:	Fax:		Email:
The foregoing instrument was acknown in Signature of Notary Public - State of Print, Type or Stamp Commissione Personally Known OR Produc	of Florida) ed Name of Notary Pul	blic)	
Applicant(s)/Agent(s) Signature:	0		(s)/Agent(s) Print Name:
Merio Hancia	Name of the Control o	Mario	(s)/ Agent(s) Print Name: Garcia-Serra
	Name of the Control o	Mario	

Client Number: 39535.00001 Writer's Direct Dial Number: (305) 376-6061 Writer's E-Mail Address: mgarcia-serra@gunster.com

April 13, 2017

VIA HAND DELIVERY

Mr. Ramon Trias Planning and Zoning Director City of Coral Gables 427 Biltmore Way, 2nd Floor Coral Gables, FL 33134

Re: Riviera Plaza / 1542 South Dixie Highway / Planning and Zoning Application / Statement of Use

Dear Mr. Trias:

On behalf of Riviera Plaza Holdings LP, (the "Applicant"), we respectfully submit this Statement of Use in connection with the enclosed Planning and Zoning application for vacation of an alley in connection with the proposed construction of a new supermarket / retail building (the "Project") to be located at 1542 South Dixie Highway (the "Property"). The Property is approximately 64,000 square feet in size and is bisected by an alley at the rear of the Property. The Property lies south of South Dixie Highway with Yumuri Street to the northeast and Madruga Avenue to the southeast. The Property is identified by the following Miami-Dade County Tax Folio Numbers: 03-4130-010-0010 and 03-4130-010-0011.

Pursuant to the City's Future Land Use Map, the relevant section of which is attached as **Exhibit A**, the Property is designated Commercial Low-Rise Intensity, and pursuant to the City's Zoning Map, the relevant section of which is attached as **Exhibit B**, the Property is zoned as "Commercial." The Site Specific Regulations, the relevant excerpts of which are provided as **Exhibit C**, control the Floor Area Ratio ("FAR"), height and front setback of the Property. The maximum allowable density/intensity for a Commercial zoned property is 1.5 FAR, or 2.0 with Mediterranean design incentives. Additionally, based on the Site Specific Regulations, the front setback must be at least 56 feet from U.S. Route 1, but can be reduced to 0 pursuant to the Mediterranean Design Ordinance.

Pursuant to Section 62-257 et seq. of the Coral Gables Code of Ordinances and Section 3-1203 of the Coral Gables Zoning Code, we respectfully request that the City vacate, abandon, and close a portion of the alley that presently runs through the Property, from Yumuri Street on the east to the boundary line of Tracts A and B approximately 300 feet to the west (the "Alley"). The Alley, which is further described in the enclosed materials, is approximately 20 feet in width and 300 feet in length. The Applicant intends to provide an alternative access easement that will

connect to what will remain of the Alley on the property to the west to Madruga Avenue. The vacation of this portion of the Alley is necessary to consolidate the building site.

The Alley has little benefit to the public as it does not connect two thoroughfares; instead it dead ends up against another commercial development on its west side, which is the result of an ordinance previously adopted by the City Commission vacating the west 20 feet of the Alley from Red Road to the boundary line of lot 3. A copy of that previously adopted Ordinance, Ordinance No. 628, is attached to this letter as **Exhibit D**. Historically, the Alley has been utilized as a driveway for the existing surface parking lot to its North and South and is indistinguishable from that parking lot. The Project will offset any potential impacts which may be caused by the requested vacation by internalizing all service and loading functions within the proposed new building and by providing structured parking. The Project will also feature a more pedestrian-friendly and aesthetically pleasing design that more accurately reflects modern design and planning standards as well as a public access easement which will continue to connect the remaining portion of the alley to Madruga Avenue. A sketch and legal description of the proposed alley access easement is attached as **Exhibit E**.

The Applicant proposes to demolish the existing two-story structure and to construct a new 74,340 square foot supermarket and separate ground floor retail spaces on the approximately 1.5 acre site. As mentioned above, the Project will require the vacation of the Alley that runs between Tracts "A" and "B." The proposed vacation of the alley is required to be reviewed pursuant to the criteria enumerated both in Section 3-1203 of the City's Zoning Code as well as Section 62-264 of the City's Code of Ordinances.

We respectfully submit that the proposed alley vacation complies with the applicable criteria as set forth in Section 3-1203 of the Zoning Code as follows:

A. The non-fee property interest sought to be abandoned:

- 1. Does not provide a benefit to the public health, safety, welfare, or convenience, in that:
 - a. It is not being used by the City for any of its intended purposes.

The alley has never served its intended purpose, as it has only ever been used as a driveway for the parking area of the retail shopping center.

b. The Comprehensive Plan, special purpose plan, or capital improvement program does not anticipate its use; or

The text of the Comprehensive Plan does not contemplate use of the subject alley.

2. Provides some benefit to the public health, safety, welfare, or convenience, but the overall benefit anticipated to result from the abandonment outweighs the specific benefit derived from the non-fee property interest, in that:

a. The vacation or abandonment will not frustrate any comprehensive plan, special purpose plan, or capital improvement program of the City;

The vacation of the alley will not frustrate any comprehensive plan, special purpose plan, or capital improvement program of the City.

b. The vacation or abandonment will not interfere with any planning effort of the City that is underway at the time of the application but is not yet completed; and

The vacation of the alley will not interfere with any current planning effort of the City.

B. The vacation or abandonment will provide a material public benefit in terms of promoting the desired development and improves the City's long-term fiscal condition and the applicant provides beneficial mitigation in the form of a proffered mitigation plan which mitigates the loss of real property, the increase in the intensity of use and/or impacts on the public health, safety and welfare including increased parking and traffic.

The vacation will provide a material public benefit by bringing a long-awaited modern supermarket to this area of the City. Furthermore, the Applicant will mitigate the impacts of the alley vacation by internalizing the traditional functions of an alley, including service and loading functions, as well as by providing structured parking and a public access easement to connect the remaining portion of the alley to Madruga Avenue.

The proposed alley vacation also complies with the applicable criteria as set forth in Section 62-264 of the City's Code of Ordinances as follows:

(1) Whether the public benefits from the use of the subject right-of-way as part of the city street system;

The public does not currently benefit from the use of the alley as it only functions as a parking area driveway for customers of the retail shopping center and is not incorporated into the City street system.

(2) Whether the proposed action is consistent with the city's comprehensive plan;

Vacating the alley is consistent with the city's Comprehensive Plan because it promotes desired development in an area where such development is much needed.

(3) The availability of alternative action to alleviate the identified problems;

Vacating the alley is necessary to consolidate the Property and permit the Project.

(4) The effect of the proposed action upon traffic circulation;

The proposed action will not have any effect on traffic circulation.

(5) The effect of the proposed action upon the safety of pedestrians and vehicular traffic;

The proposed action will create a more pedestrian-friendly design, which will ensure the safety of pedestrians and vehicular traffic.

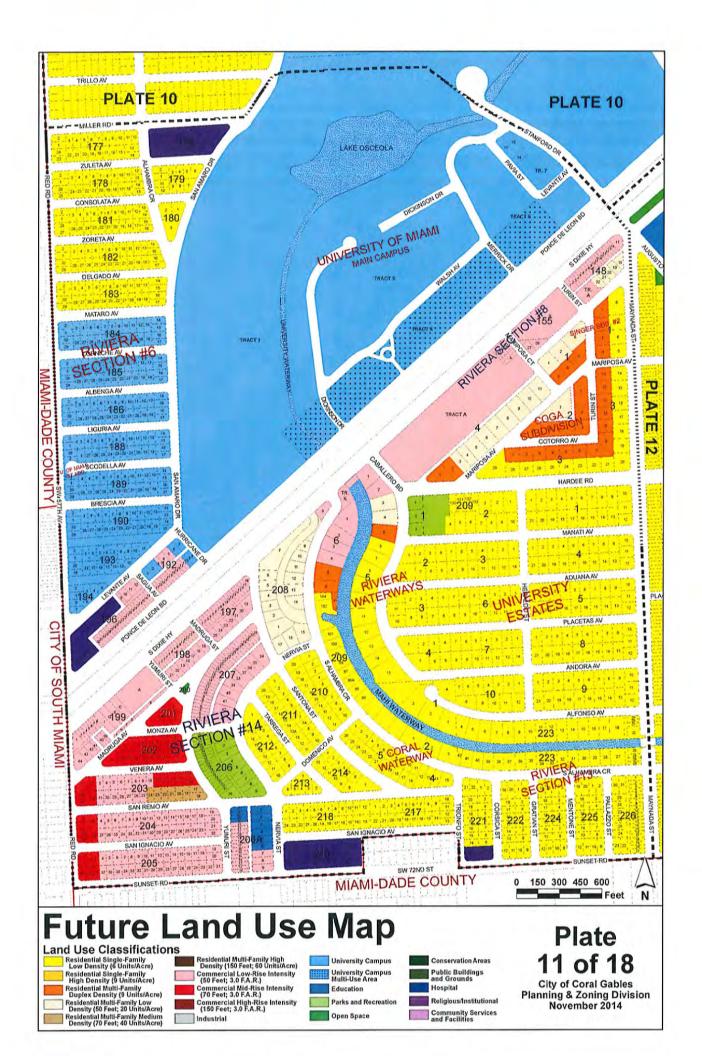
(6) The effect of the proposed action upon the provision of municipal services, including, but not limited to, emergency services and waste removal; and

The proposed action will have no effect on the provision of municipal services.

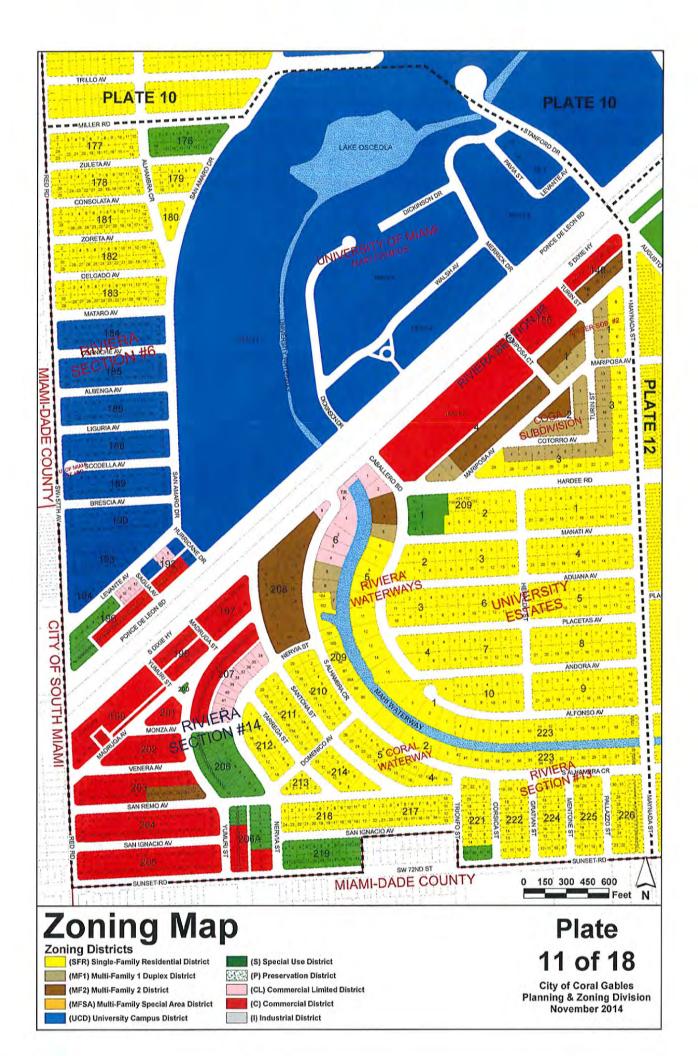
(7) The mitigation plan proposed by the applicant to offset any potential impacts.

The Project will offset any potential impacts by internalizing all service and loading functions within the new building and by providing structured parking as well as a public access easement to connect the remaining portion of alley to Madruga Avenue.

Vacating a portion of this underutilized Alley is consistent with the City's Comprehensive Plan, as it permits consolidation of the Property making way for the Project which furthers various goals, policies and objectives of the City's Comprehensive Plan as further explained above. Furthermore, the Applicant will bear all costs associated with the relocation of utilities, pavements, sidewalks, curbing and removal of same. Accordingly, we respectfully request your favorable consideration of this application and look forward to working with you on this Project. If you have any questions, please do not hesitate to contact me at (305) 376-6061. Thank you for your attention to this matter.


Sincerely,

PP: Jennyler file.
Mario Garcia-Serra


Enclosures

MIA ACTIVE 4571643.2

Exhibit A

Exhibit B

Exhibit C

APPENDIX A - SITE SPECIFIC ZONING REGULATIONS

- C. Setbacks-Minimum side.
 - 1. The side setbacks for Lots 1 through 9, inclusive, Block 244 shall conform to the existing side setbacks in said Lots 1 through 9.
- D. Setbacks-Minimum rear.
 - 1. The rear setbacks for Lots 1 through 9, inclusive, Block 244 shall conform to the existing rear setbacks in said Lots 1 through 9.
- E. Walls and fences.
 - Height, Materials and Specifications. Walls constructed or erected on the following described lots shall conform with the existing walls on the block:
 - a. Lots 1 through 9, inclusive, Block 244.

Section A-88 - Riviera Section Part 13.

- A. Building sites.
 - 1. The north ten (10) feet of Lot 13, all of Lot 14, the south fifteen (15) feet of Lot 15 and the west ten (10) feet of adjacent vacated alley, Block 227, shall be considered as one (1) building site. (2555)

Section A-89 - Riviera Section Part 14.

- A. Facing of lots.
 - 1. Lots 15 and 16, Block 203, shall be deemed to face Venera Avenue.
 - 2. Lots 17 and 18, Block 203, shall be deemed to face San Remo Avenue.
- B. Floor area ratio (FAR) provisions for buildings four (4) or more stories in height.
 - See Archived Zoning Code Section 3-6(y).
 - 2. Maximum floor area ratio (FAR) for C District buildings four (4) stories in height located on the following described property shall not exceed 1.5: (2829)
 - a. All lots and tracts in Block 197, 198 and 199.
- C. Height of buildings.
 - 1. No buildings or structures shall be constructed or erected on the following described properties to exceed three (3) stories or forty-five (45) feet in height, whichever is less:
 - a. Lots 8 through 21, inclusive, in Block 192.
 - b. Lots 13 through 40, inclusive, in Block 196.
 - c. Lots 10 through 29, inclusive, in Block 206.
 - d. All Lots in Blocks 206A and 207. (2771)
 - 2. No apartment buildings shall be constructed or erected on the following described properties to exceed four (4) stories or forty-five (45) feet in height, whichever is less:
 - a. All lots and tracts in Blocks 197, 198 and 199.
 - b. All lots in Blocks 201 and 202.
 - c. Lots 3 through 31, inclusive, Block 203.
 - d. Lot 4 through 37, inclusive, Block 204.
 - e. Lots 4 through 37, inclusive, Block 205.
 - f. Lots 4 through 7, inclusive, Lots 9 through 13, inclusive and a portion of Lot 8, Block 208. (2771)
 - No commercial buildings shall be constructed or erected on the following described buildings four (4) stories or forty-five (45) feet in height, whichever is less:
 - a. All lots and tracts in Blocks 197, 198, and 199.
 - b. All lots in Blocks 201 and 202.
 - c. Lots 3 through 10, inclusive, and Lots 25 through 31, inclusive, Block 203.
 - d. Lots 4 through 37, inclusive, Block 204.
 - e. Lots 4 through 37, inclusive, Block 205.
 - 4. No commercial buildings and/or structures shall be erected or altered on the following described properties to exceed six (6) stories or seventy-two (72) feet in height, whichever is less:
 - a. Lots 1, 2, 32, 33 and 34, Block 203.
 - b. Lots 1, 2, 3, 38, 39 and 40, Block 204.
 - c. Lots 1, 2, 3, 38, 39 and 40, Block 205.
 - 5. A structural addition, having a tower and cross of approximately sixty-eight (68) feet in height, to the First Methodist Church of South Miami, may be constructed on Lots 1 through 5,

Exhibit D

ORDDIANCE NO. 628

THE SECRETARIES OF THE PROPERTY OF THE PROPERT

AN ORDINANCE VACATING AND DISCRIPPAING THAT CERTAIN 20 FOOT ALLEY RUNNING SOUTH-BESTERLY AND NORTHEASTERLY IN BLOCK 199, RIVIERA SECTICI PART 18, FROM RED ROAD 10 THE DOKHEASTERLY BOUNDARY LIPE OF LOT 3 IN SAID BLICK EXTITUED, ACCORDING TO PLAT THEREOF FILED IN THE HERLIC RECORDS OF DACE COMITY, FLORIDA, TO FEMILY CONSTRUCTION OF A BUILDING OVER SAID ALLEY WHICH MOUND ED PROSSERS WITHOUT SUCH VACATION AND DISCONTINUANCE.

WHEREAS, Harley N Vanderboogh and wife are the owners of Lots 1 to 4, both inclusive and Lots 40 to 44, both inclusive of Block 199 of 2rd Ravised Plat of Coral Cables, Riviera Section, Part 14, according to a map or plat thereof, recorded in Plat Book 28 at Page 32 of the Public Records of Dade County, Florida; and

WHEREAS, the said Harley W. Vanderboegh has requested the City of Coral Gables to vacate the alley as shown on said plat, commanding at Red Road, and lying between Lots 1, 2 and 3 and Lots 144, 43 and 42 and the southwesterly 25 feet of Lot 41; and

WHEREAS) the said Harley ft. Vanderboegh has represented to the city that he has the written consents of the other property owners in said block to the vacation of said alley and has deeded to the city, for alley purposes, the northeasterly 25 feet 14, according to the plat thereof recorded Plat of Coral Gables Riviera Section, Part 14, according to the plat thereof recorded in Plat Book 28 at page 32, Dade County, Florida, records;

NOT, THEREFORE, HE IT CROADED BY THE COMMISSION OF THE CITY OF CORAL GARLES,

SECTION 1. That the 20 feet allow numbers of the northeasterly and southwesterly in Block 199, Riviera Section, Part 14, from Red Read to the northeasterly boundary line of lot 3 in said block, extended, according to the plat thereof recorded in the Public Records of Dade County, Florids, in Plat Bock 28, at page 32, (being that portion of the alley in said block lying between lots 1, 2 and 3 and Lots 44, 43, 42 and the southwesterly 25 feet of Lot 41 thereof) be, and the same hereby is vacated.

PASSED AND ADDPIND THIS 18th DAY OF OCTOBER A. D. 1949.

APPROVED:

W. Keith Phillips

Elkett Freder

ATTEST:

E. B. Poorman

٦

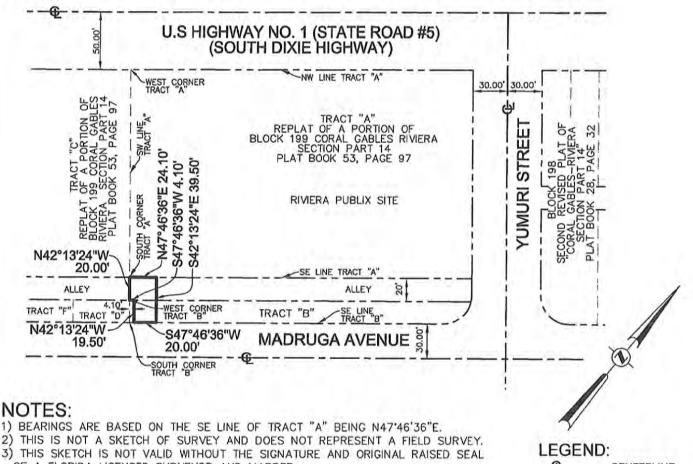
Exhibit E

SKETCH AND LEGAL DESCRIPTION

PULICE LAND SURVEYORS, INC.

5381 NOB HILL ROAD SUNRISE, FLORIDA 33351

TELEPHONE: (954) 572-1777 FAX: (954) 572-1778


E-MAIL: surveys@pulicelandsurveyors.com CERTIFICATE OF AUTHORIZATION LB#3870

LEGAL DESCRIPTION: ACCESS EASEMENT

THE SOUTHWESTERLY 24.10 FEET OF TRACT "B", "REPLAT OF A PORTION OF BLOCK 199 OF CORAL GABLES RIVERIA SECTION PART 14", ACCORDING TO THE PLAT THEREOF, AS RECORDED IN PLAT BOOK 53, PAGE 97, OF THE PUBLIC RECORDS OF MIAMI-DADE COUNTY, FLORIDA; LESS THE SOUTHWESTERLY 4.10 FEET THEREOF; TOGETHER WITH THE SOUTHWESTERLY 24.10 FEET OF THAT PORTION OF THE 20.00 FOOT WIDE ALLEY BETWEEN TRACTS "A" AND "B" OF SAID PLAT.

SAID LANDS SITUATE, LYING AND BEING IN THE CITY OF CORAL GABLES, MIAMI-DADE COUNTY, FLORIDA AND CONTAINING 872 SQUARE FEET, MORE OR LESS.

OF A FLORIDA LICENSED SURVEYOR AND MAPPER.

CENTERLINE

FILE: RIVIERA PLAZA HOLDINGS LP

SCALE: 1"=80'

DRAWN BY: B.E.

ORDER NO.: 62126

DATE: 11/09/16

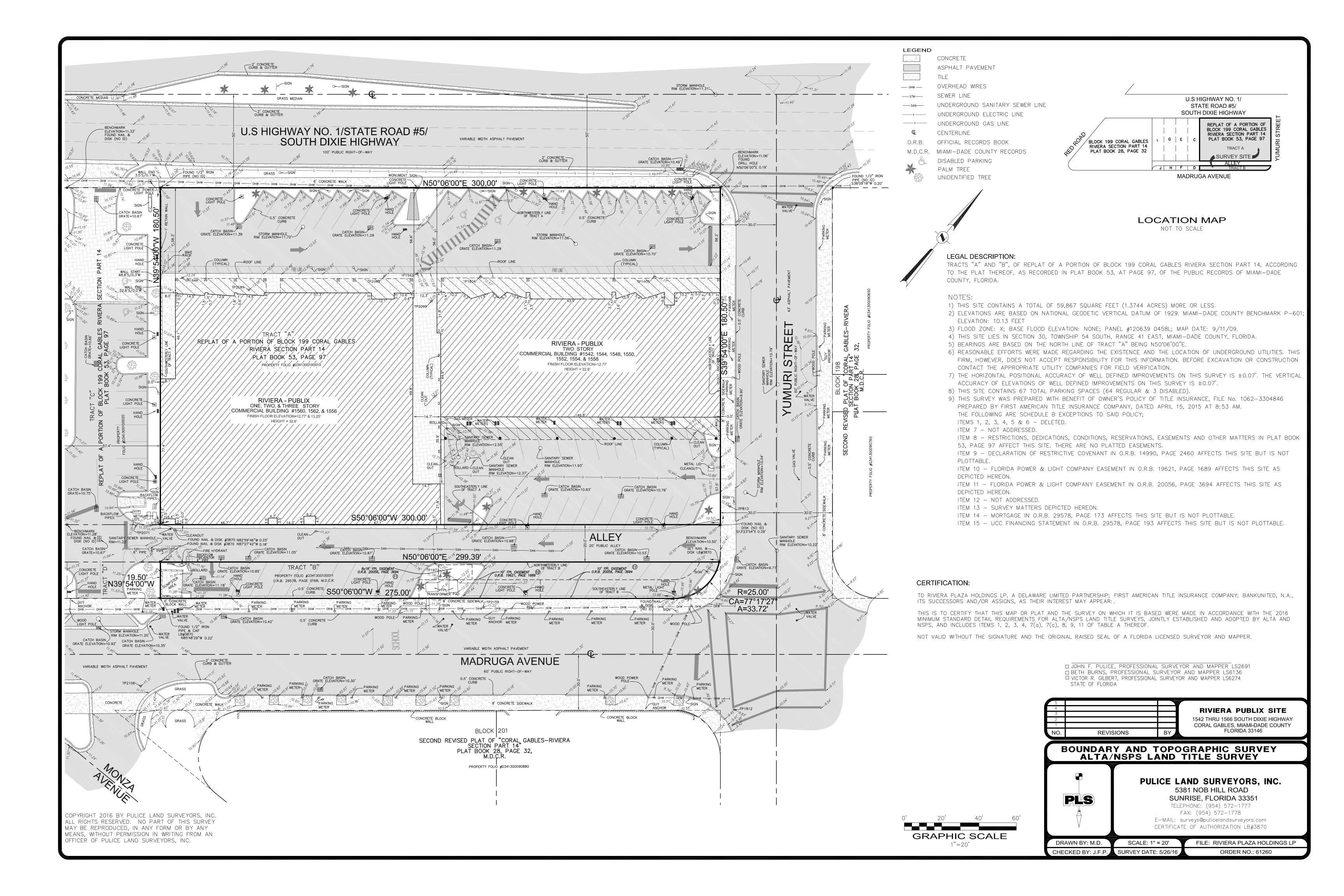
ACCESS EASEMENT

CORAL GABLES, FLORIDA

FOR: RIVIERIA PUBLIX

JOHN F. PULICE, PROFESSIONAL SURVEYOR AND MAPPER LS2691

☐ BETH BURNS, PROFESSIONAL SURVEYOR AND MAPPER LS2691
☐ WICTOR R. GILBERT, PROFESSIONAL SURVEYOR AND MAPPER LS6274
STATE OF FLORIDA


RIVIERA PLAZA 1558 S DIXIE HIGHWAY

B.O.A. SET 4-13-2017

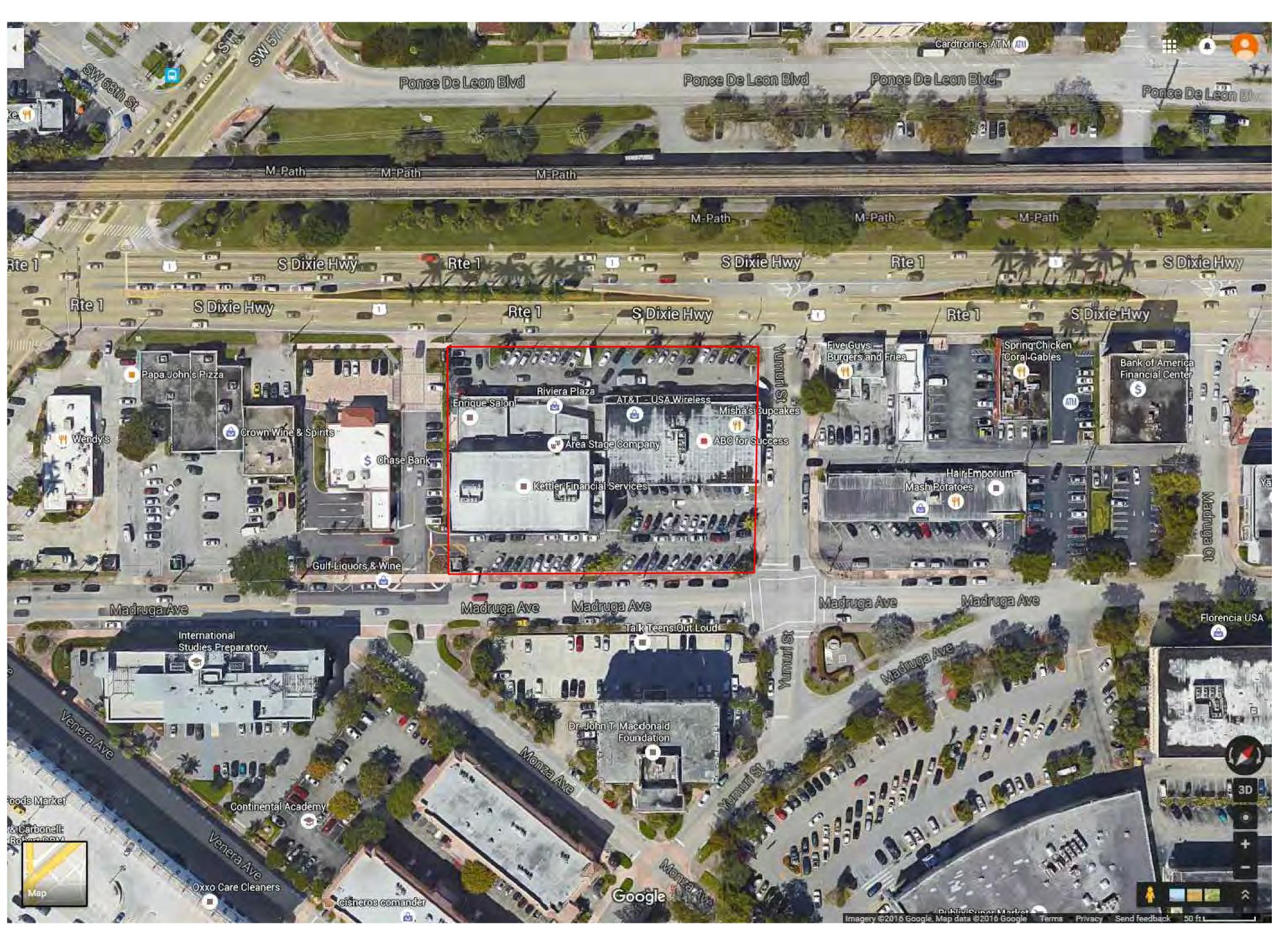
BEHAR • FONT

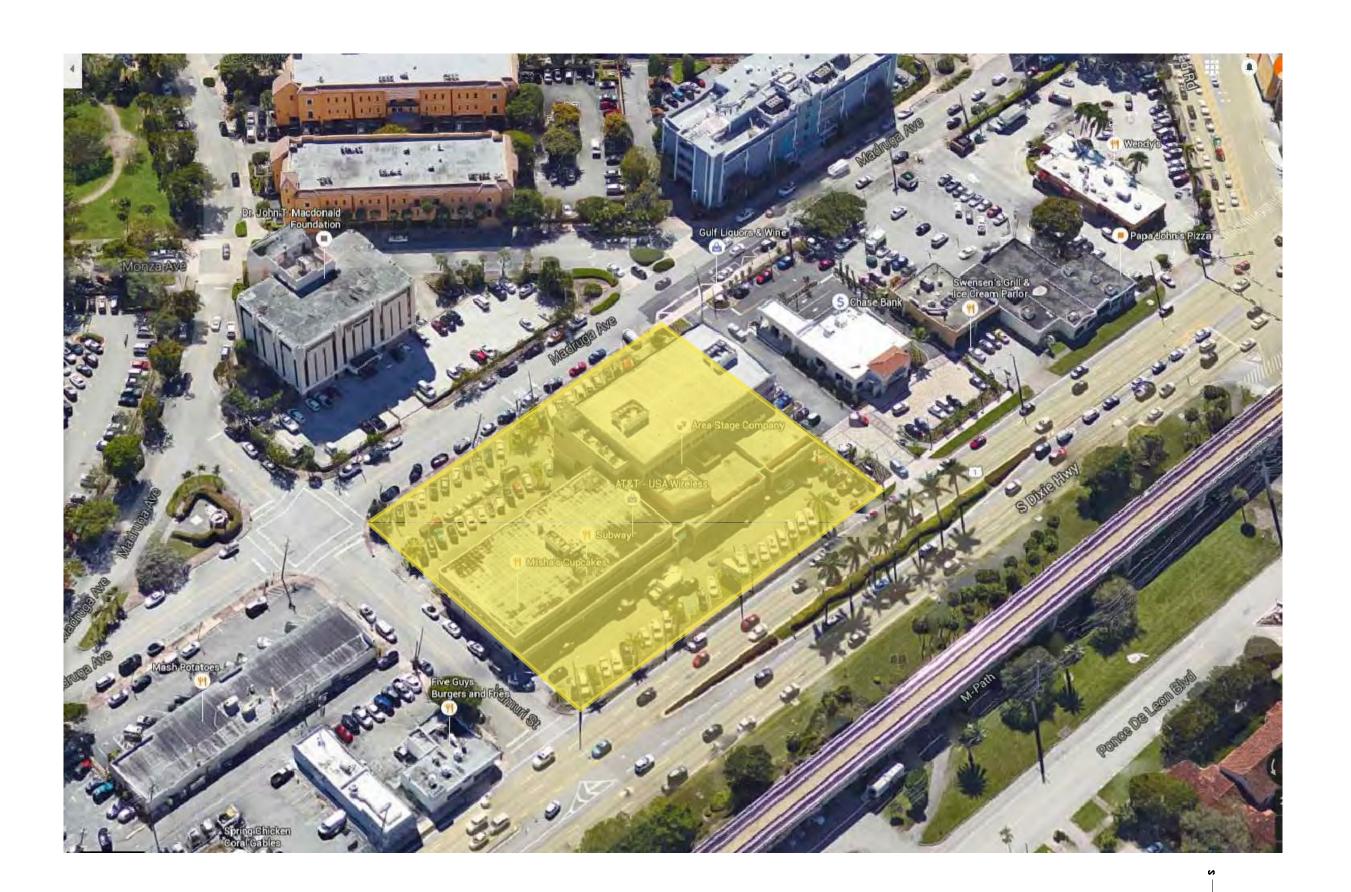
PART NERS, P.A.
ARCHITECTURE • PLANNING • INTERIORS

	Sheet List		
#	Sheet Number	Sheet Name	
1		COVER SHEET	
2		SURVEY	
3 (CP-1	SITE MAP	
4 (CP-2	AERIAL VIEWS	
5 (CP-3	SITE PHOTOS	
6	A0	ZONING CHART	
7	A1	GROUND LEVEL SITE PLAN	
8	A2	2nd LEVEL FLOOR PLAN	
9	A3	3rd LEVEL FLOOR PLAN	
10	A4	4th LEVEL FLOOR PLAN	
11 /	A4	4th LEVEL FLOOR PLAN	
12	A5	ROOF PLAN	
13	A6	ELEVATIONS	
14	A7	ELEVATIONS	
15 /	A-7.1	CONTEXT ELEVATION	
16	A-8	SECTIONS	
17	A-9	3D VIEWS	
18 L	L-1	LANDSCAPE PLAN	
19 L	L-2	LANDSCAPE DETAILS AND NOTES	

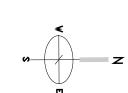
BEHAR·FONT

PARTNERS, P.A.
ARCHITECTURE • PLANNING • INTERIORS

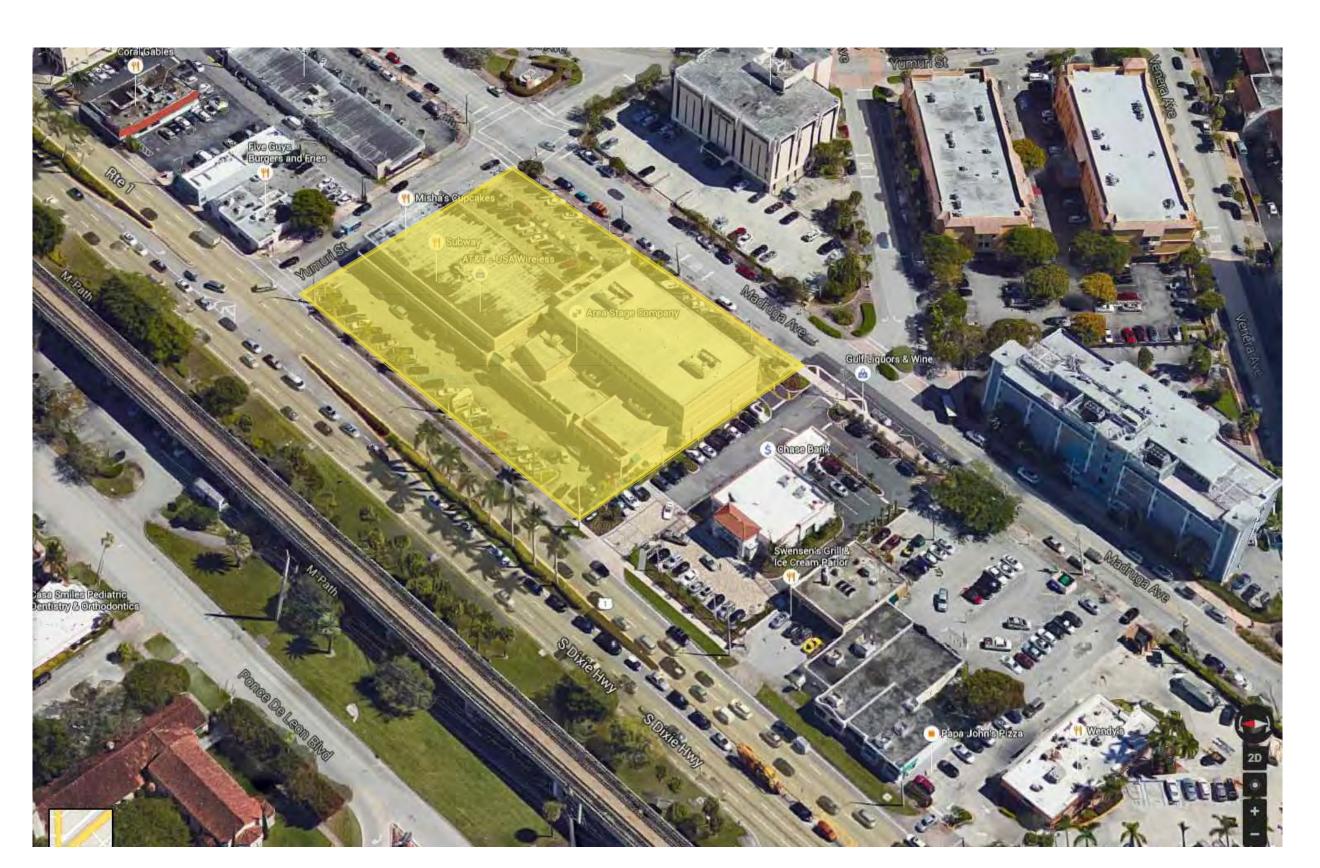

4533 Ponce de Leon Blvd. Coral Gables, Florida 33146

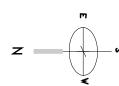

TEL: (305) 740-5442 FAX: (305) 740-5443 E-MAIL: info@beharfont.com

SEAL:


JAVIER FONT AR No. 12547

DATE:
02-15-2017
PROJECT NO:
16-039
DRAWING NAME:
SITE MAP
SHEET NO:
CP-1





SITE AERIALS



SEAL:

JAVIER FONT AR No. 12547

RIVIERA PLAZA
1558 SOUTH DIXIE HWY
CORAL GABLES, FLORIDA 33146

DATE:
02-15-2017
PROJECT NO:
16-039
DRAWING NAME:
SITE AERIALS
SHEET NO:
CP-2

PICTURE # 3

PICTURE # 7

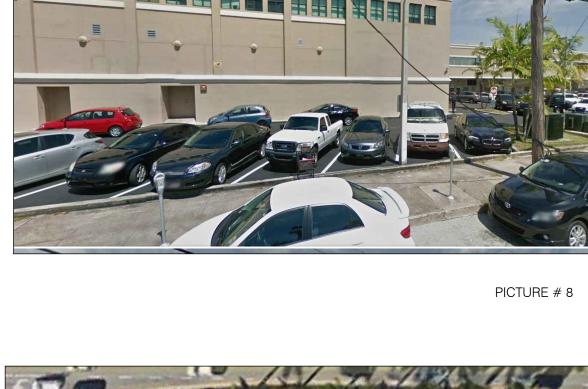
PICTURE # 9

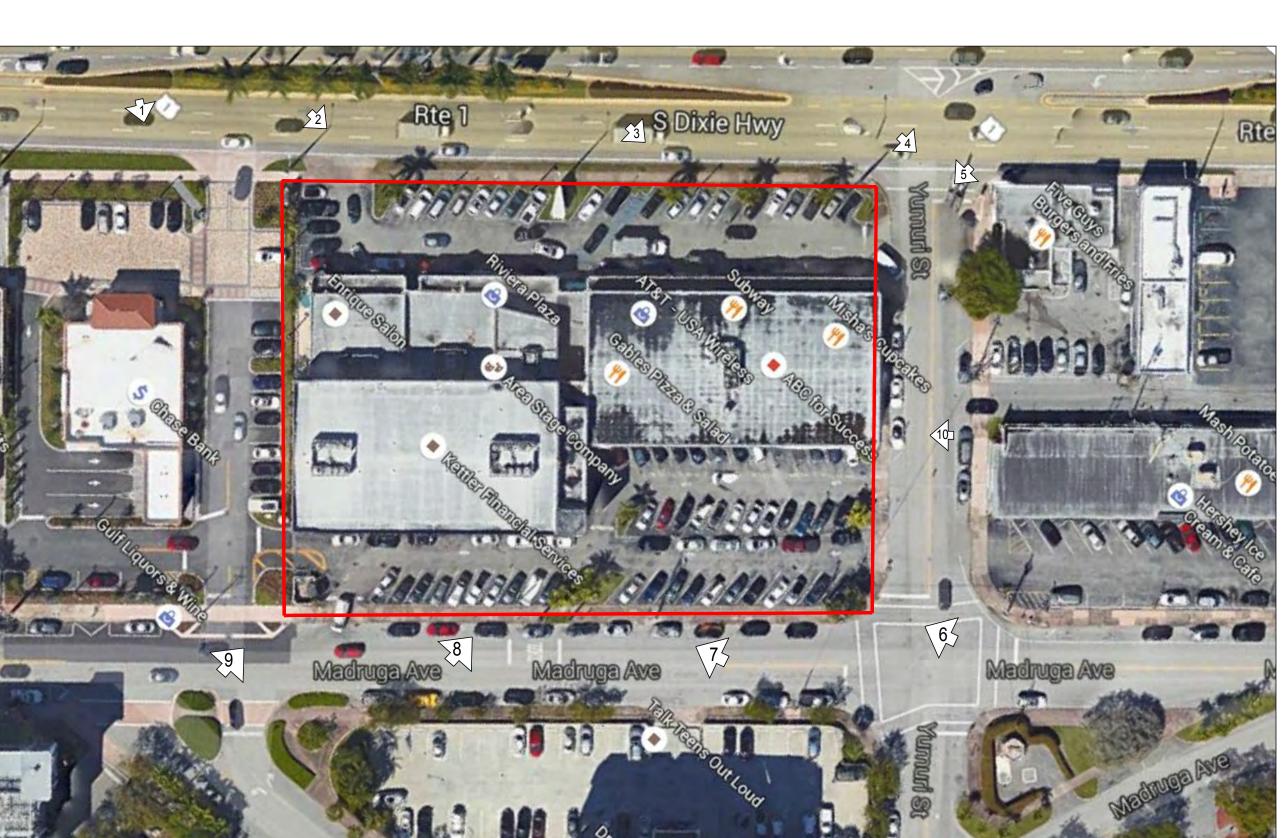
4533 Ponce de Leon Blvd. Coral Gables, Florida 33146

E-MAIL: info@beharfont.com

SEAL:

(305) 740-5442 FAX: (305) 740-5443


PICTURE # 10



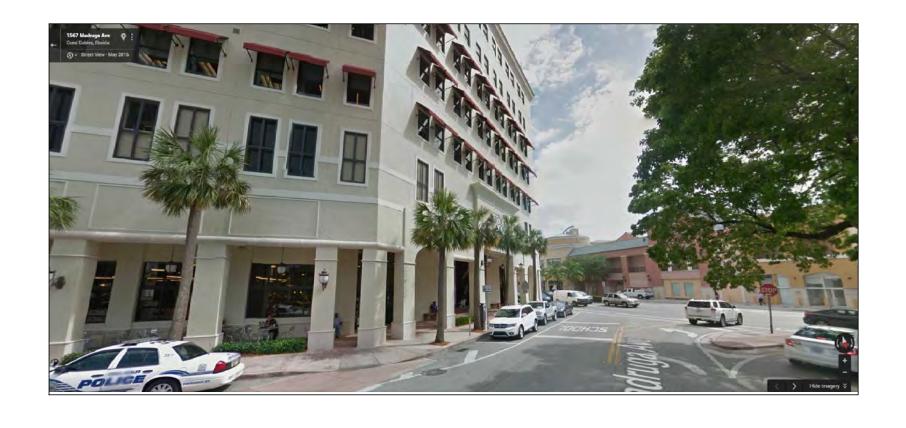
PICTURE # 2

PICTURE # 4

SITE MAP

NTS

SITE PHOTOS

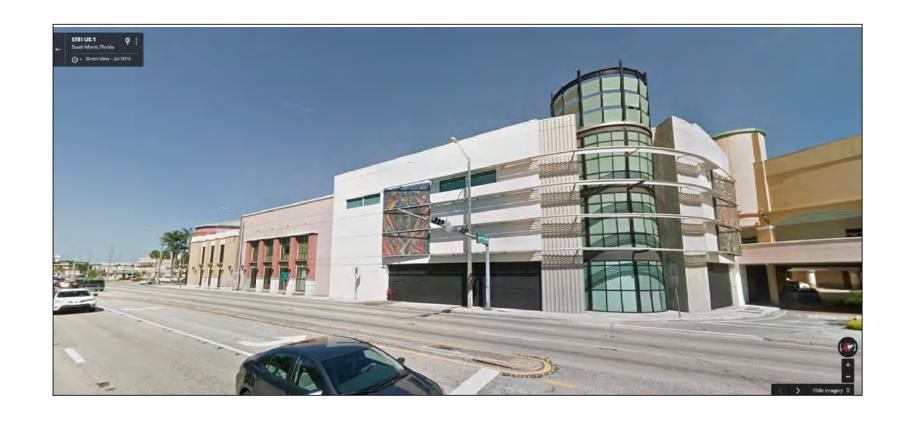

DATE: 02-15-2017 PROJECT NO: 16-039 DRAWING NAME: SITE PHOTOS SHEET NO: CP-3

PICTURE # 5

PICTURE # 6

SEAL

JAVIER FONT AR No. 12547



DATE: 02-15-2017 PROJECT NO: 16-039 DRAWING NAME: CONTEXT PHOTOS SHEET NO: CP-4

S. DIXIE HWY CONTEXT ELEVATIONS

ZONINIO INICODMANTIO)NI							
ZONING INFORMATIO	NIC							
PROJECT NAME:			RIVIERA PLAZA					
PROPERTY ADDRES	SS:	1558	S DIXIE HWY					
PROPERTY'S LAND (JSE DESIGNA	TION	: COMMERCIAL LOW R	ISE				
ZONING DESIGNATION	ON : COMMER	CIAL						
NET LOT AREA (NOT	INCLUDE ALL	EY):	59,733.60 SQ. FT.	(1,371 ACRES)				
ALLEY AREA:		,	5,998.15 SQ FT.	(0,137 ACRES)				
TOTAL NET LOT ARE	A (INCLUDED	ALLE	Y): 65,731.75 SQ. FT.	(1,508 ACRES)				
MAXIMUM F.A.R			ALLOWED/REQUIRED	PROVIDED				
NET LOT AREA (NOT 59,733.60 SQ. FT. X 2 (WITH M		•	119,467.2 SQ FT	74,340 SQ. F				
	TO	TAL						
PROPOSED BUILDING	G F.A.R.							
GROUND RETAIL #1 = 9								
GROUND			5,368 SQFT	21,202 SQ. F				
4TH FLOOR	RETAIL #	4 = 5	53,138 SQFT	53,138 SQ. F				
	1		TOTAL	74,340 SQ. F				
BUILDING SETBACKS	S							
		ΔΙ	LOWED/REQUIRED	PROVIDED				
		/ _	LOWED/ITEQUITED	5'-8 1/2" UP TO 35'-0"				
FRONT (US HIGHWA	AY # 1)			IN HEIGHT				
		;	56' FROM US ROUTE 1	8'-7" ABOVE 35'-0" IN HEIGHT				
			SETBACK REDUCT PURSUANT TO THE MEDITERRANEAN DESIGN ORDINANO					
			P TO 15' NONE VE 15' SHALL BE SETBACK	0'-0" UP TO 35'-0" IN HEIGHT				
FRONT (MADRUGA A	VENUE)	AT T	ROM THE PROPERTY LINE THE LOWER OF :	2'-0" ABOVE 35'-0" IN HEIGHT				
a) b)			ORNICE LINE ABOVE 15' HE TOP OF THE PARKING EDESTAL	SETBACK REDUCTION PURSUANT TO THE MEDITERRANEAN				

SIDE STREET (YUMURI STREET)

INTERIOR SIDE (ADJ. PROPERTY

c) FORTY (40) FEET

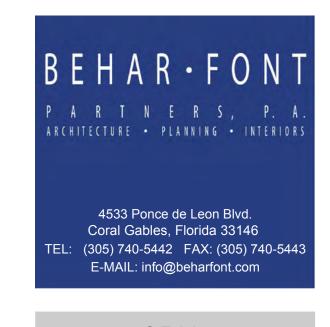
15'-0"

UP TO 45' IN HEIGHT : 0'-0"

GREATER THAN 45'
IN HEIGHT: 15' PLUS 1 FOOT
OF ADDITIONAL SETBACK FOR
EACH 3 ' OF HEIGHT ABOVE 45'

MEDITERRANEAN DESIGN ORDINANCE

3'-1"
SETBACK REDUCTION
PURSUANT TO THE
MEDITERRANEAN
DESIGN ORDINANCE

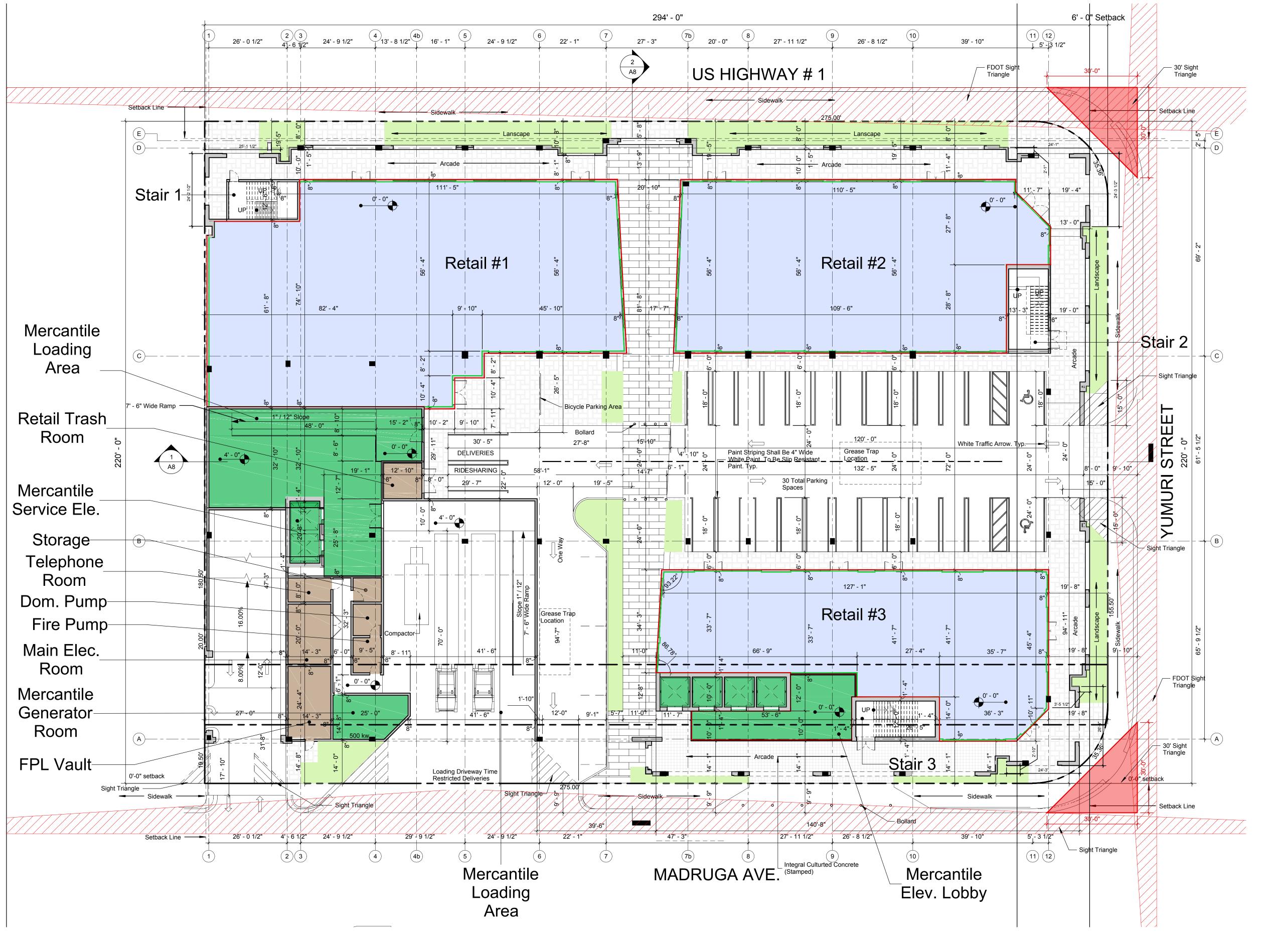

UP TO 45' IN HEIGHT: 0'-0"

TOTAL LOT COVERAGE	REQUIRED	PROVIDED
	NO MINIMUM OR MAXIMUM REQUIRED	59,461 SQ FT,
LANDSCADED / TOTAL ODEN SDACE		
AS PER 5.1105.C1 CITY OF CORAL GABLES ZONING CODE	ALLOWED/ REQUIRED	PROVIDED
GROUND LEVEL (ON-SITE) @ GROUND FLOOR - GREEN AREA.	10% OF THE BUILDING SITE (WITH ALLEY)	3,212 SQ FT.
@ GROUND FLOOR - HARDSCAPE (PERVIOUS PAVERS)	10% OF 65,731= 6,573 SQ FT	9,793 SQ FT.
TOTAL		13,005 SQ FT.
BUILDING HEIGHTS	REQUIRED	PROVIDED
AS PER CITY OF CORAL GABLES ZONING CODE MAXIMUM HEIGHT: 72'-0"	72'-0" MAXIMUM HEIGHT	72'-0"
PARKING AS PER 5.1409 CITY OF CORAL GABLES ZONING CODE	ALLOWED/REQUIRED	PROVIDED
	RETAIL PARKING (1 PER 250 SQ.FT.) 74,340 SQ.FT./250 = 297.3	298

	НС	PARKING REQUIREMENT				
GROUP		PARKING SPACES		PROVIDED		
COMMERCIAL	REQUIRED H	IC PARKING 2% OF 298 = 6		6		
		1 PER 6 REQUIRED PARKING SPACES REQUIRED TO BE VAN ACCESSIBLE 7/6 = 1,17				
** INCLUDED IN TO		6				
LOADING SPACES AS PER 5.1409 D CITY OF CORAL GABLES ZONING CODE		ALLOWED/REQUIRED	PROVIDED			
		2	4			
тс	OTAL PARKING S	SPACES PER FLOOR				
GROUND FLOOR			30 PA	RKING SPACES		
SECOND FLOOR	PARKING		135 PA	RKING SPACES		
THIRD FLOOR PA	RKING		133 PA	RKING SPACES		
		TOTAL	298 PA	ARKING SPACES		
		TOTAL	298 PA	ARKING SPACES		

	ARTICLE 5 DEVEL SECTION 5 -604 CORAL GA		TANDARDS ERRANEAN STYLE DESIGN STANDARDS
b	. DEVELOPMENTS BONUS STANDARDS		
Т	ABLE 1. REQUIRED STANDARDS (NON RESIDENTIAL)		
REF	TYPE	PROVIDED	COMMENTS
1	ARCHITECTURAL ELEMENTS ON BUILDING FACADES	YES	SEE ELEVATIONS SHEETS A-5, & A-6
2	ARCHITECTURAL RELIEF ELEMENTS AT STREET LEVEL	YES	SEE FLOOR PLAN SHEET A-1.0 & ELEVATIONS SHEETS A-5, A-6, ARCADE AND LANDSCAPING PROVIDED.
3	ARCHITECTURAL ELEMENTS ON THE TOP OF BLDG.	YES	SEE ELEVATIONS SHEETS A-5, A-6
4	BICYCLE STORAGE	YES	SEE FLOOR PLAN L-1
5	BUILDING FACADES	YES	SEE ELEVATIONS SHEETS, A-2, A-3, (VERTICAL BREAKS PROVIDED AT REGULAR INTERVALS)
6	BUILDING LOT COVERAGE	YES	
7	DRIVE THRU FACILITIES	N/A	
8	LANDSCAPE / OPEN SPACE AREA	YES	SEE SHEET THIS SHEET, A-1 & L-1
9	STREET LIGHTING	YES	STREET LIGHTS PROPOSED.
10	PARKING GARAGES	YES	SEE SHEET A-1, A-2 & A-3
11	PORTE-COCHERES	N/A	
12	SIDEWALK / PEDESTRIAN ACCESS	YES	SEE SHEET A-1
13	STRUCTURAL SOIL	YES	SEE SHEET L-1
14	WINDOWS ON MEDITERRANEAN BUILDINGS	YES	SEE ELEVATIONS SHEETS A-2, A-3.

	MEDITE	ERRANEAN S	TYLE DESIGN
(ARC	HITECTURAL AND PUBLIC REALM STANDARDS) TABLE 2	(EIGHT OF T	WELVE REQUIRED)
REF	TYPE	PROVIDED	COMMENTS
1	ARCADES AND OR / LOGGIAS	YES	SEE PLAN THIS SHEET, AND A-1 FOR ARCADE PROVIDED ALONG US HIGHWAY # 1, MADRUGA AVE. & YUMURI STREET
2	BUILDING ROOF LINES	YES	
3	BUILDING STEPBACK	YES	
4	BUILDING TOWERS	N/A	
5	DRIVEWAYS	YES	PARKING GARAGE DRIVEWAY ENTRY FROM MADRUGA AVE. & YUMARI STREET
6	LIGHTING OF LANDSCAPING	YES	UPLIGHTING AT US HIGHWAY #1 7 YUMARI STREET
7	MATERIALS ON EXTERIOR BUILDING FACADES	YES	PAINTED STUCCO, W/KEYSTONE VENEER AND IMITATION KEYSTONE ACCENTS AT PEDESTRIAN ENTRIES,
8	OVERHEAD DOORS	YES	NOTE THAT NONE OF THE PARKING ENTRIES THAT MAY RECEIVE OVERHEAD DOORS.
9	KEYSTONE PAVER TREATMENT	YES	PAVERS ARE SHOWN THROUGHOUT THE GROUND FLOOR KEYSTONE TILES
10	PEDESTRIAN AMENITIES	YES	(BENCHES, EXPANDED SIDEWALKS, REFUSE CONTAINER)
11	PEDESTRIAN PASS-THROUGHS / PASEOS	YES	
12	UNDERGROUND PARKING	N/A	


SEAL:

JAVIER FONT AR No. 12547

1558 SOUTH I CORAL GABLES, F

DATE: 02-15-2017 PROJECT NO: 16-039 DRAWING NAME: ZONING CHART SHEET NO: A-0

ZONING CHART

BEHAR • FONT

PART NERS, P.A.

ARCHITECTURE • PLANNING • INTERIORS

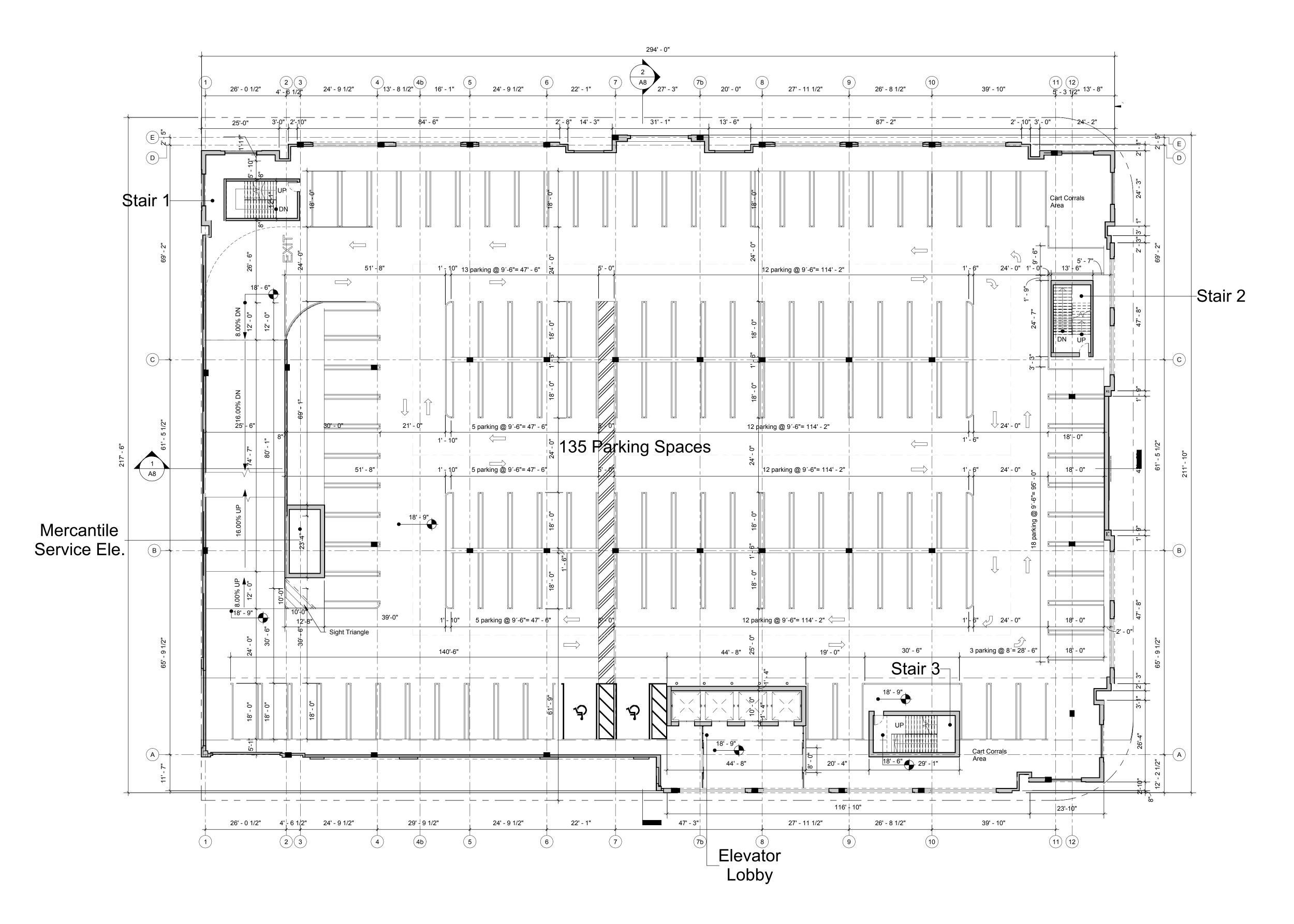
4533 Ponce de Leon Blvd.

Coral Gables, Florida 33146

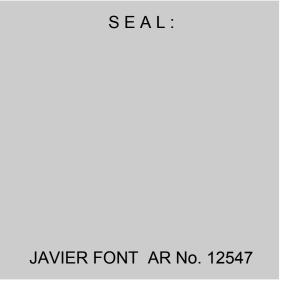
TEL: (305) 740-5442 FAX: (305) 740-5443

E-MAIL: info@beharfont.com

JAVIER FONT AR No. 12547

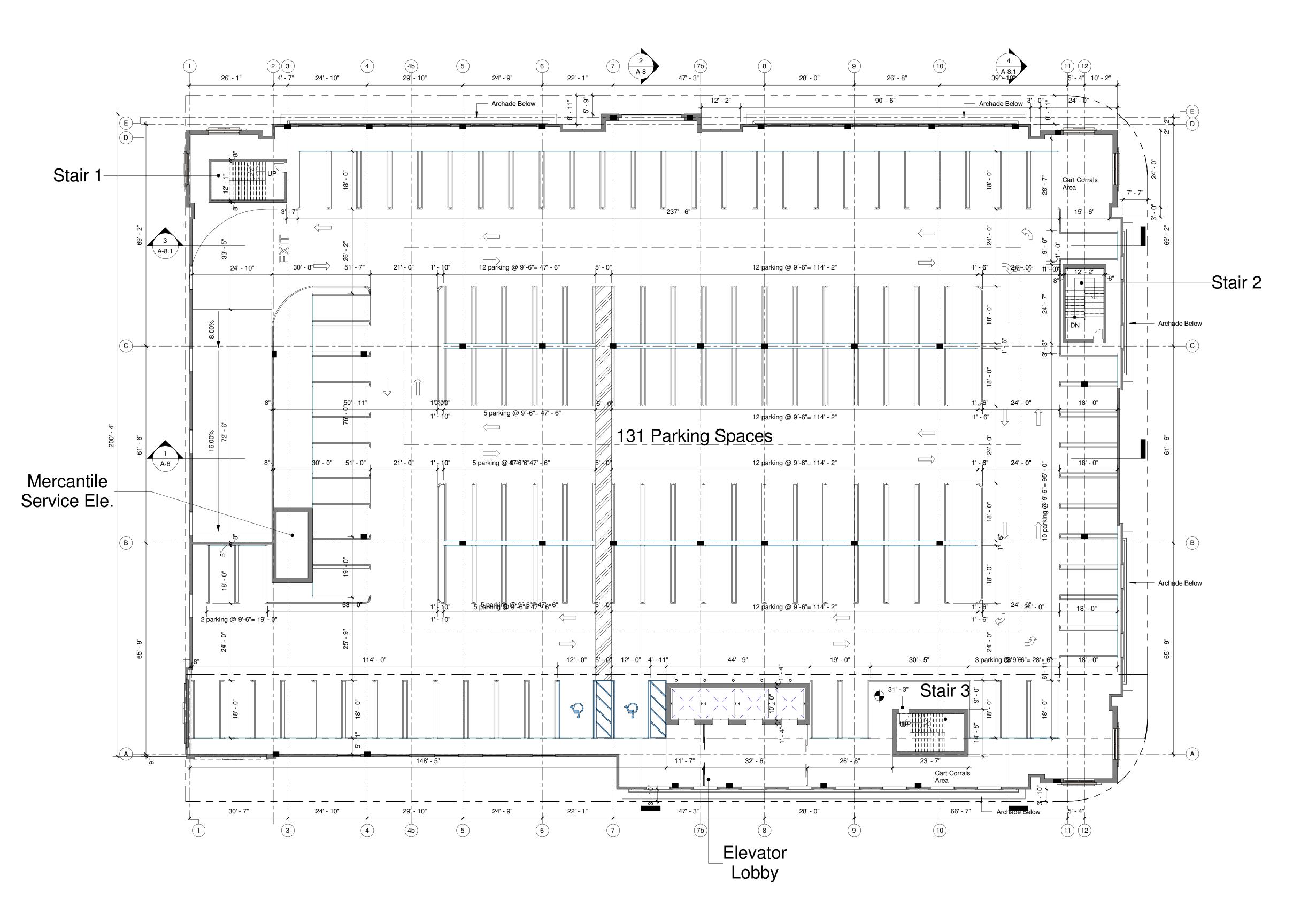

RIVIERA PLAZA
1558 SOUTH DIXIE HWY
CORAL GABLES, FLORIDA 33146

DATE:
02-15-2017
PROJECT NO:
16-039
DRAWING NAME:
GROUND FLOOR SITE PLAN
SHEET NO:


A-1


GROUND FLOOR SITE PLAN

SCALE: 1/16" = 1'-0"



DATE:
02-15-2017
PROJECT NO:
16-039
DRAWING NAME:
SECOND FLOOR PLAN
SHEET NO:
A-2

THIRD FLOOR PLAN

1/16" = 1'-0"

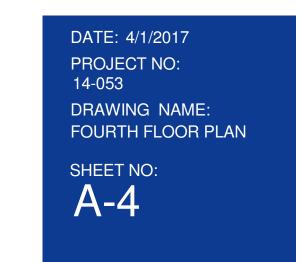
JAVIER FONT

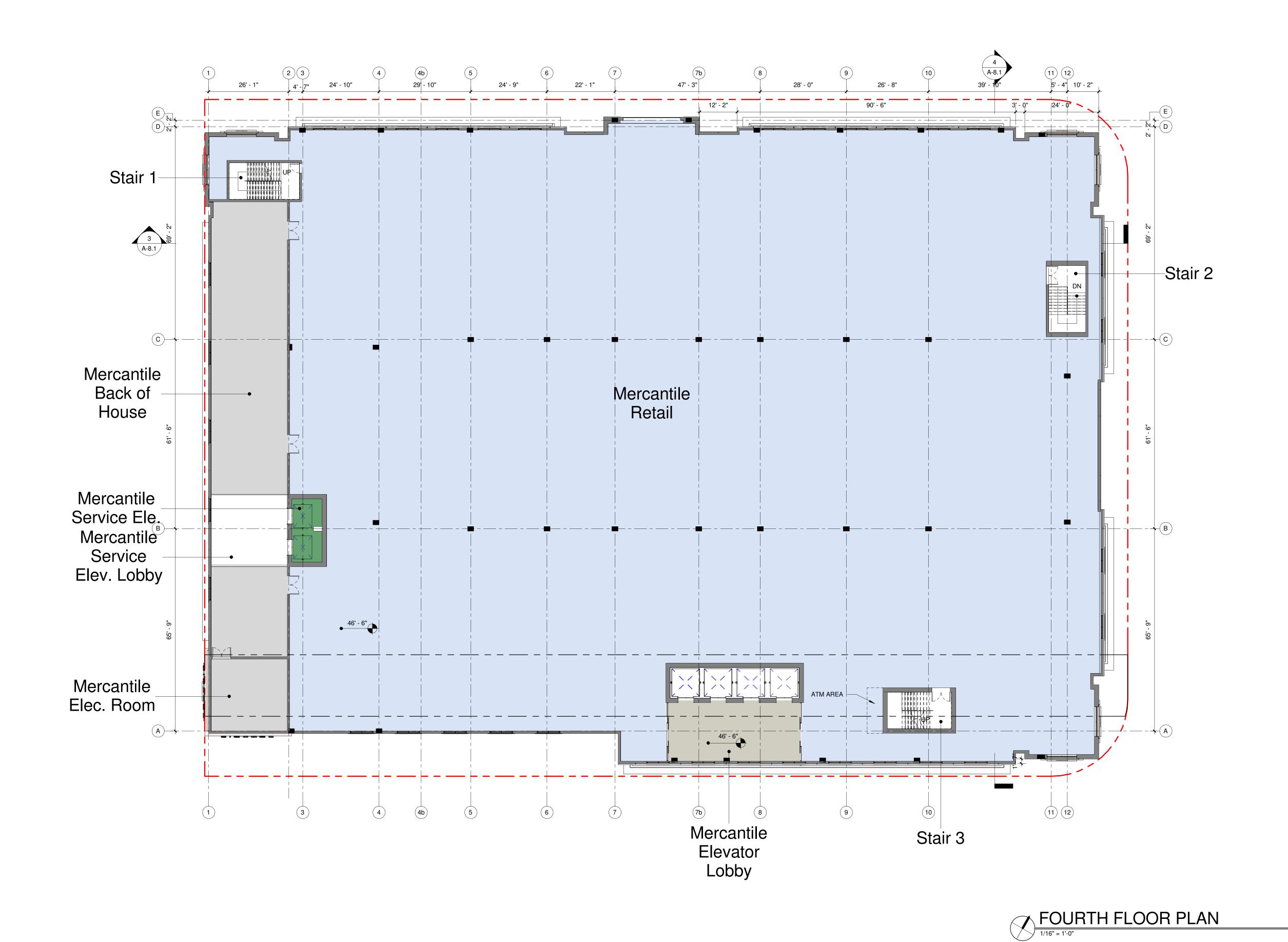
PROPOSED

RIVIERA PLAZA

1558 S DIXIE HWY

CORAL GABLES, FLORIDA 33146


4. THE DESIGN AND DRAWINGS FOR THIS PROJECT ARE PROPERTY OF THIS ARCHITECT AND ARE PROTECTION ACT


DATE: 4/1/2017
PROJECT NO: 14-053
DRAWING NAME: THIRD FLOOR PLAN
SHEET NO: A-3

JAVIER FONT

JAVIER FONT

PROPOSEI

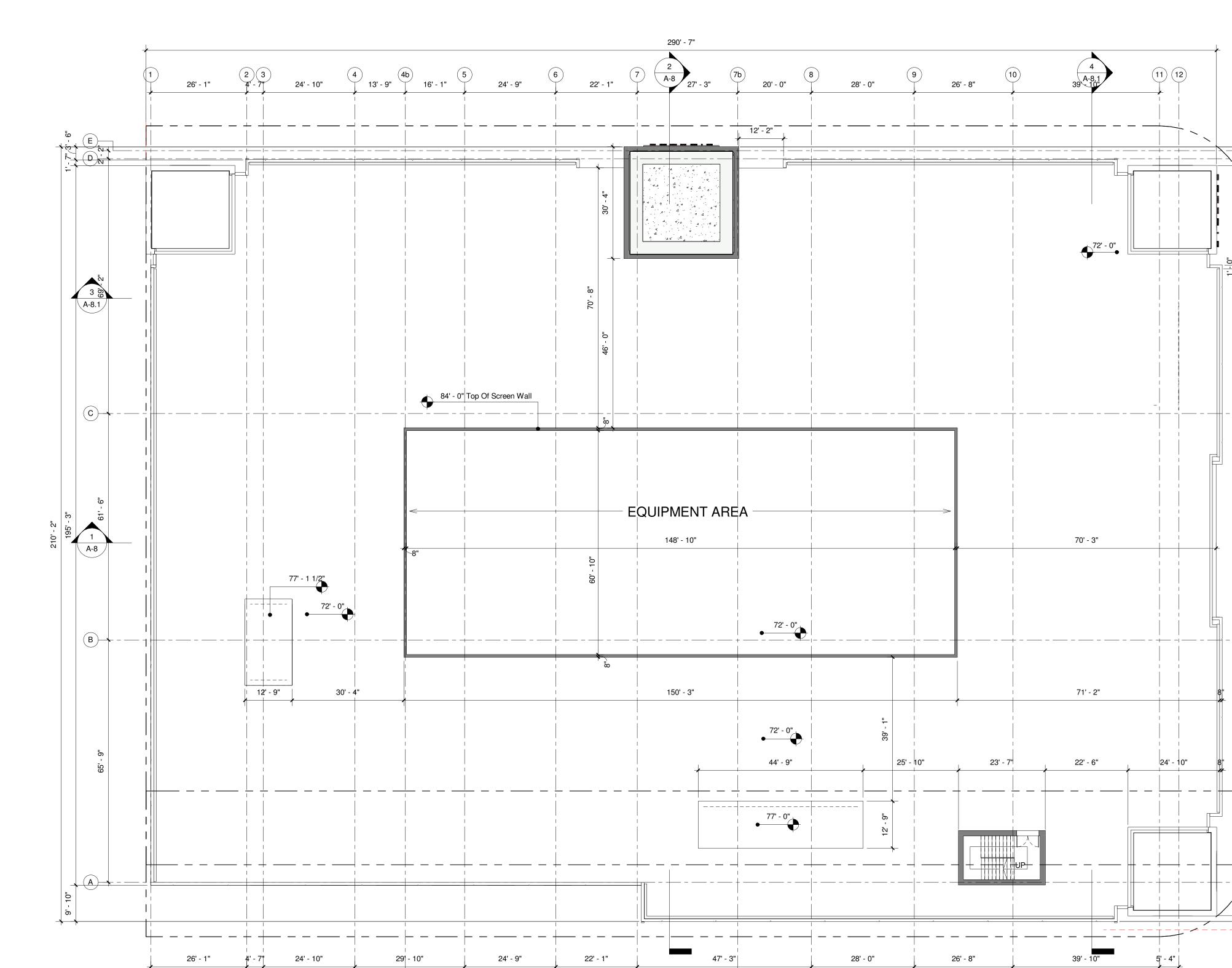
PROPOSEI

PROPOSEI

1558 S DIXIE 1

1558 S DIXIE 1

CORAL GABLES, FLC


CORAL GABLES, FLC

SHEET NO:

Roof Plan

1/16" = 1'-0"

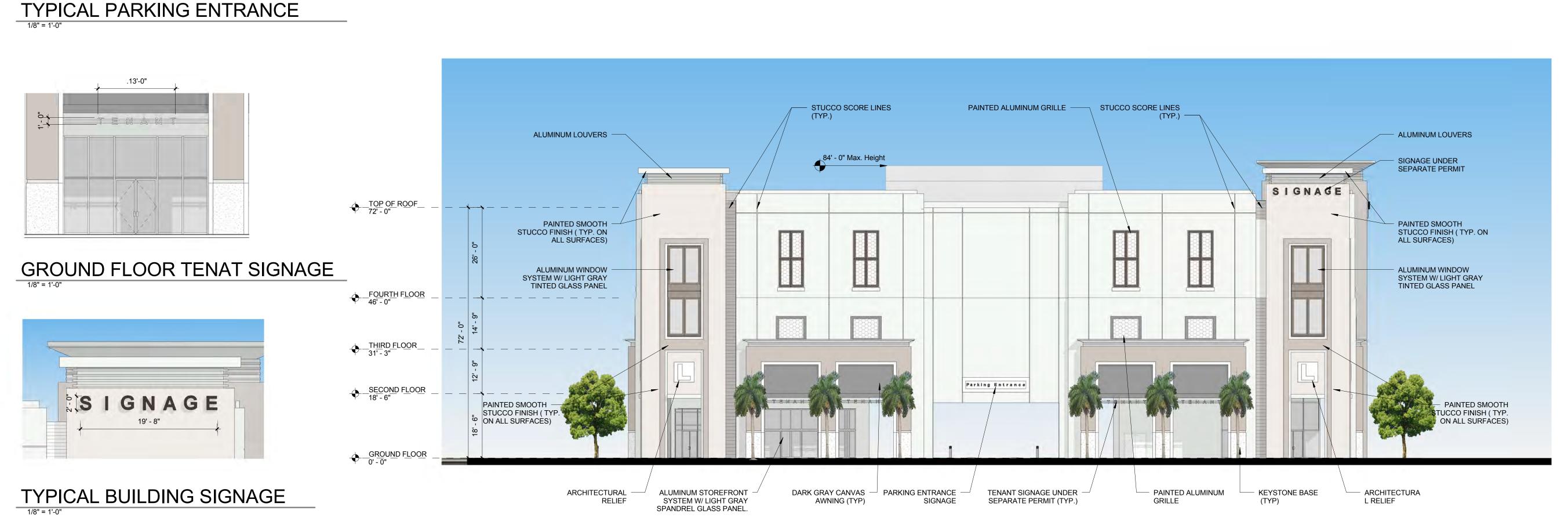
11) (12)

(7b)

9

10

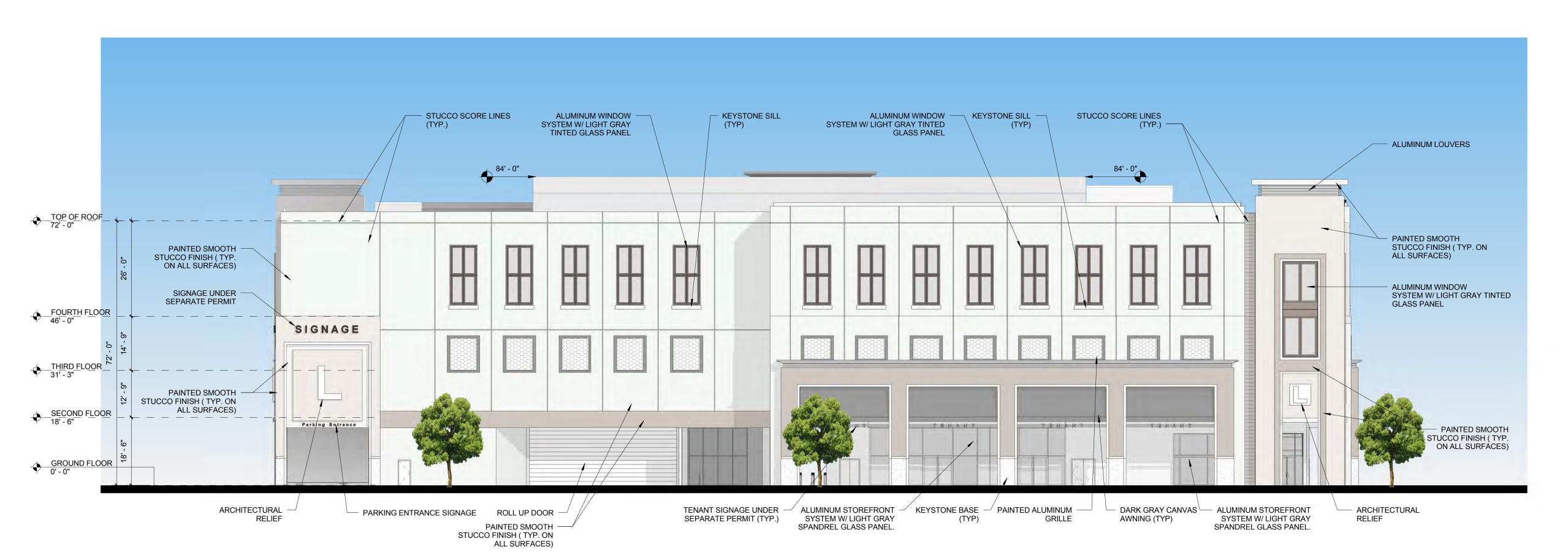
2 3


1

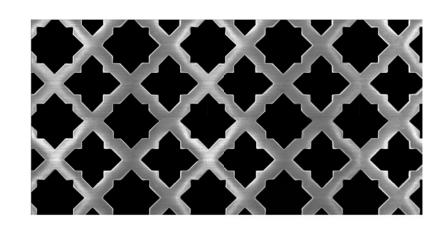
4b)

5

6



JAVIER FONT


RIVIERA PL 1558 S DIXIE HWY CORAL GABLES, FLORIDA

DATE: 4/1/2017 PROJECT NO: 14-053 DRAWING NAME: ELEVATIONS SHEET NO: A-6

EAST ELEVATION - MADRUGA AVE.

ARCHITECTURAL GRILLE

BEHAR • FONT

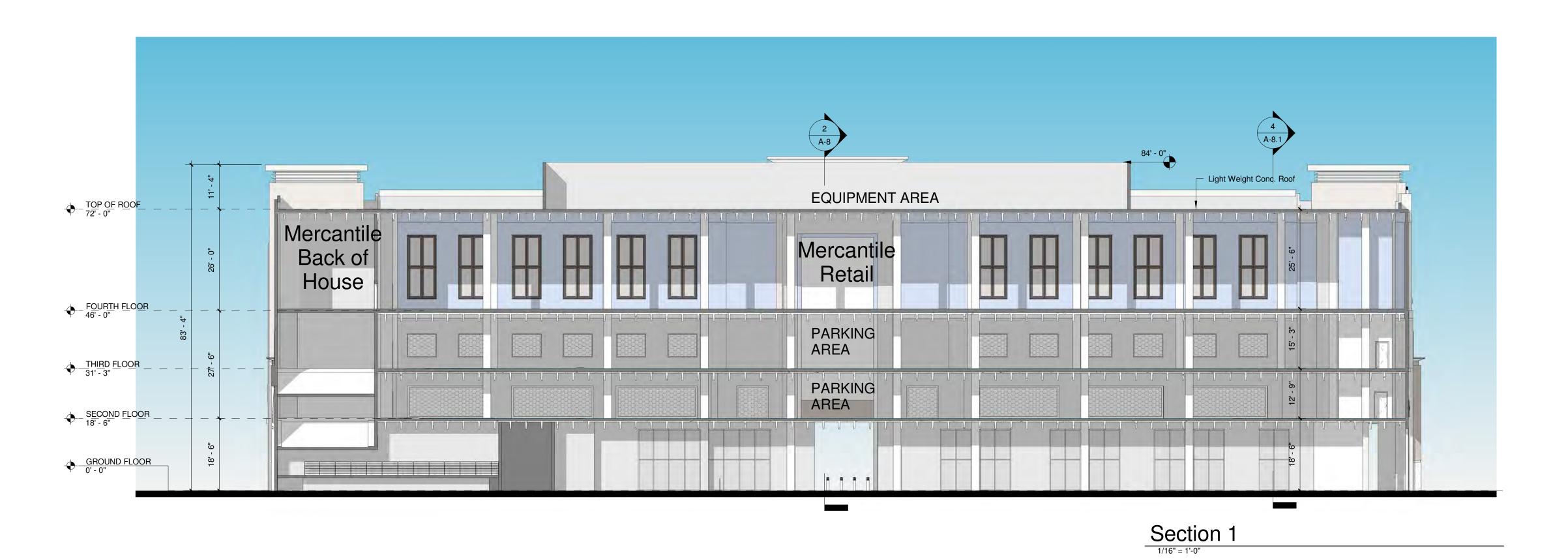
PART NERS, P.A.

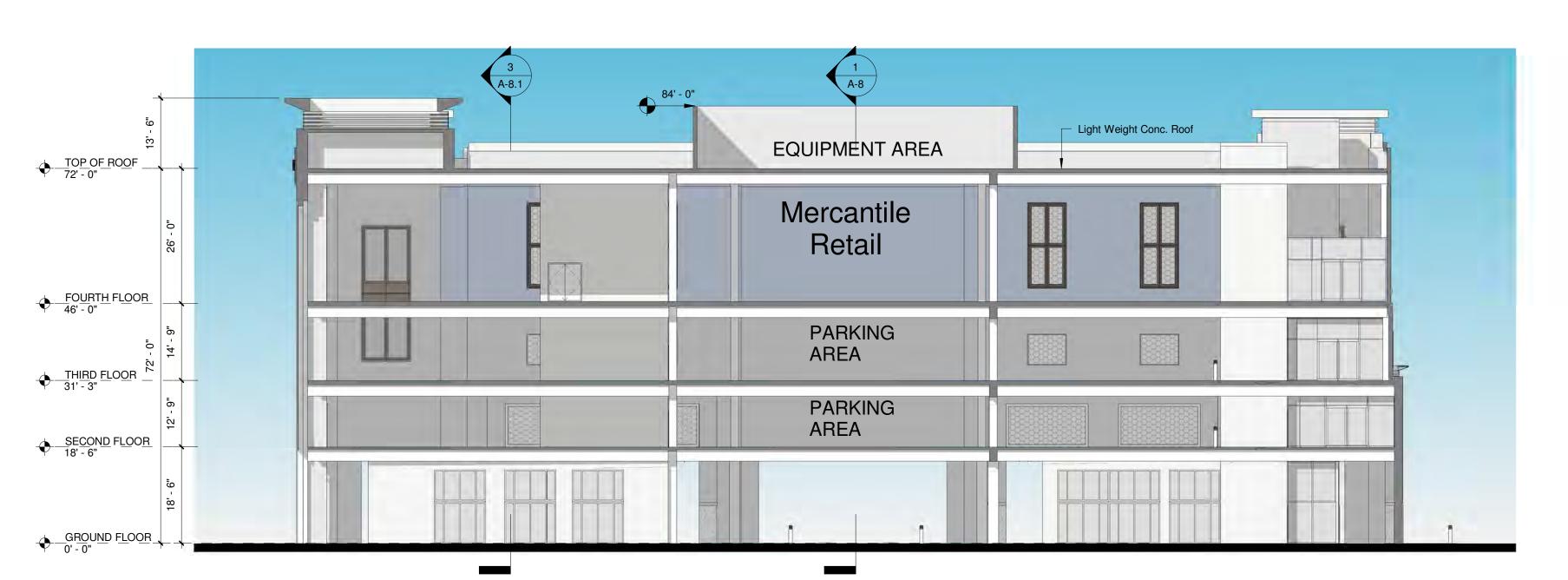
ARCHITECTURE • PLANNING • INTERIORS

4533 Ponce de Leon Boulevard

Coral Gables, Florida 33146

TEL: (305) 740-5442 FAX: (305) 740-5443

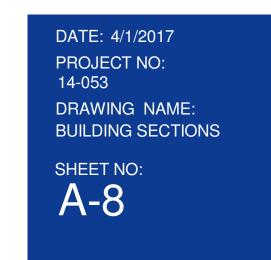

E-MAIL: info@beharfont.com

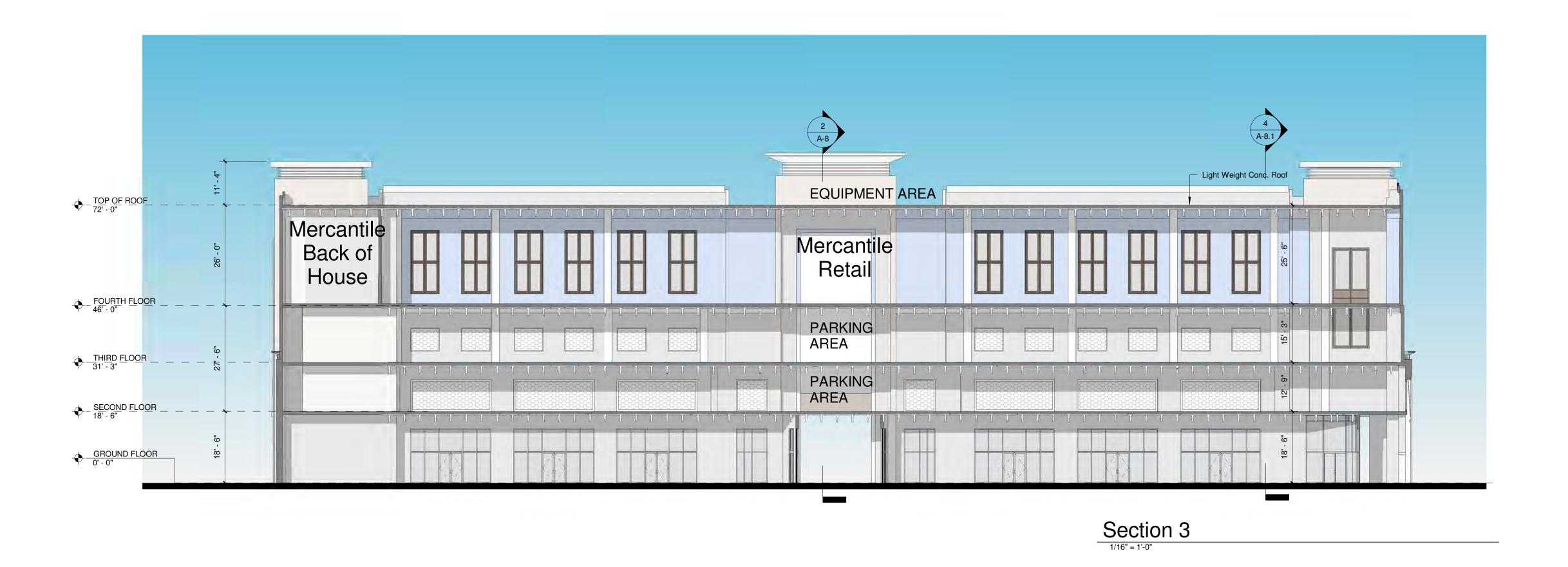

SEAL:

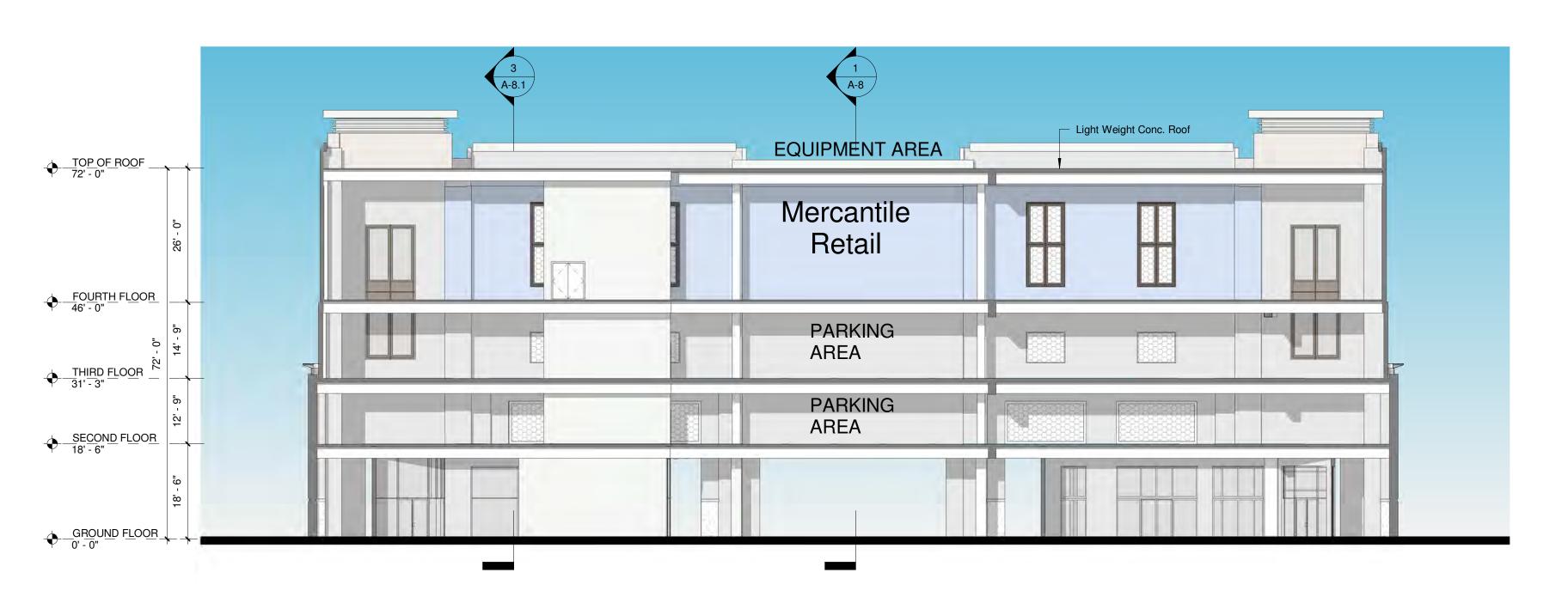
JAVIER FONT

DATE: 4/1/2017
PROJECT NO: 14-053
DRAWING NAME: ELEVATIONS
SHEET NO: A-7

Section 2


1/16" = 1'-0"




SEAL:

JAVIER FONT

Section 4

1/16" = 1'-0"

SEAL:

JAVIER FONT

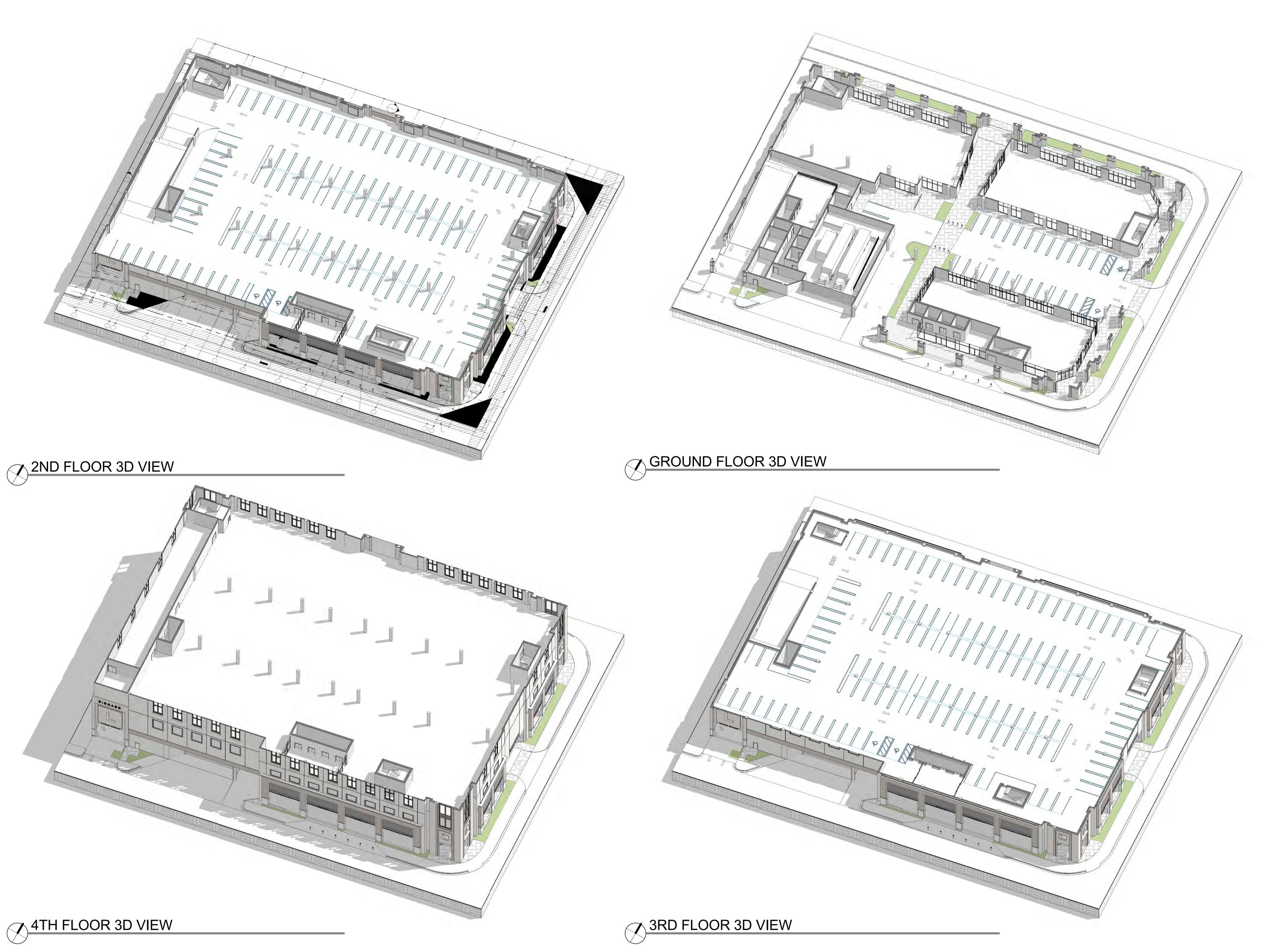
DATE: 4/1/2017

PROJECT NO: 14-053

SHEET NO:

DRAWING NAME: 3D VIEWS

YUMURI STREET


SOUTH DIXIE HIGHWAY

SOUTH DIXIE HIGHWAY 3Ds

MADRUGA AVE.

JAVIER FONT

RIVIERA PLAZA
1558 S DIXIE HWY
CORAL GABLES, FLORIDA 33146

DATE: 4/1/2017
PROJECT NO: 14-053
DRAWING NAME: 3d VIEWS
SHEET NO: A 10

ANDY WITKIN LA No. 00008

LANDSCAPE LIST

		TREES/PALMS			
SYMBOL	QUAN.	PROPOSED MATERIAL	SPECIFICATIONS		
CE	3	*Conocarpus erectus 'sericeus'	10' HT. X 4' SPR. 2" CAL.		
	3	SILVER BUTTONWOOD	F. G.		
ED	11	Elaeocarpus decipiens	12' O.A. HT. CONE		
	11	JAPANESE BLUEBERRY TREE	100 GAL.		
PE	8	Ptychosperma elegans 'single'	24' O.A. HT., SINGLE		
	0	SINGLE ALEXANDER PALMS	F.G.		
		SHRUBS AND GROUNDCOVERS			
SYMBOL	QUAN.	PROPOSED MATERIAL	SPECIFICATIONS		
AD	16	Asparagus densiflorus 'Myer's'	18"HT. X 18" SPR. / 18" O.C.		
AD	10	FOXTAIL FERN	3 GAL.		
CI	171	*Chrysobalanus icaco 'Red Tip'	24" HT. X 24" SPR. / 24" O.C.		
	171	RED TIP COCOPLUM	3 GAL.		
FM	955	Ficus microcarpa 'Green Island'	15" HT. X 15" SPR. / 15" O.C.		
1 171	900	GREEN ISLAND FICUS	3 GAL.		
MS	355	Microsorum scolopendrium	12" HT. X 12" SPR. / 15" O.C.		
1410	333	WART FERN	1 GAL.		
DI	101	Pentas lanceolata "New Look Red"	12" HT. X 12" SPR. / 12" O.C.		
PL	101	DWARF PENTAS	1 GAL.		
PX	15	Philodendron 'Xanadu'	24" HT. X 24" SPR. / 24" O.C.		
	45	XANADU PHILODENDRON	3 GAL.		

LANDSCAPE LEGEND Information Required to	be Permanently Affixed to Plan
Zoning District: Commercial	Net Lot Area <u>1.508</u> acres <u>65,731.75</u> s.f.
OPEN SPACE	REQUIRED/ PROVIDED ALLOWED
A. Square Feet of open space required by Article 5, Development Standom Net lot area = $65,731$ s.f. x 10 % = $6,573$ s.f.	dards: 6,573 s.f13,005 s.f.
STREET TREES (maximum average spacing of 35' o.c.): A. <u>108</u> linear feet along Madruga Avenue =	3
B. Total Trees Required	3

NOTES:

LIGHTING:

Street lighting shall be provided and located on all streets/rights-of-way. The type of fixture shall be the approved City of Coral Gables light fixture and location/spacing, etc. shall be the subject to review and approval by the Department of Public Works.

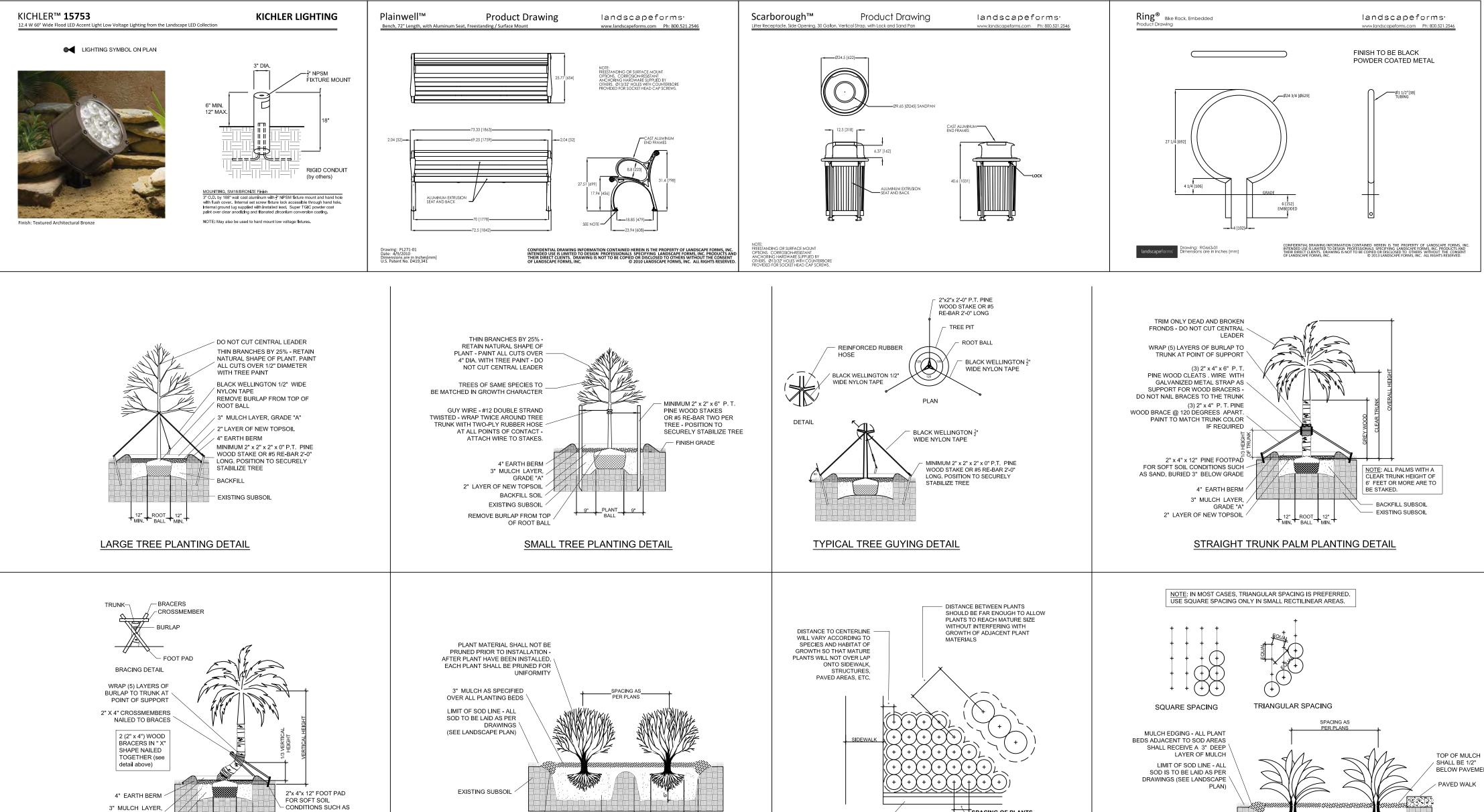
STRUCTURAL SOIL:

Structural soil shall be utilized within all rights-of-way for all street level planting areas with root barriers approved by the Public Service Department.

IRRIGATION

- a. At the time of installation, all newly planted and relocated plant material shall be watered by temporary or permanent irrigation systems that produce a minimum of one hundred and ten (110%) percent plant material coverage.
- b. Irrigation shall be prohibited within native plant communities and natural forest communities, except for temporary systems needed to establish newly planted material. Temporary irrigation systems shall be disconnected immediately after establishment of plant communities. Irrigation systems shall be designed to conserve water by allowing differential operation schedules based on hydrozone.
- c. Irrigation systems shall be designed, operated, and maintained to not overthrow or overflow onto any impervious surfaces. i. Low trajectory spray heads, and/or low volume water distributing or application devices, shall be used. Overhead irrigation systems shall only be permitted in bonafide agricultural activity areas. ii. Gray water shall be used where approved systems are available.
- iii. A moisture or rain sensor device shall be required on all irrigation systems equipped with automatic controls. Irrigation systems shall be timed to operate only during hours and on days permitted under Miami-Dade County Code.

DI ANTING:


a. Plant material shall be Florida no. 1 or better as defined by the latest edition of "Grades and Standards for Nursery Plants".b. All trees planted adjacent to accessible routes and accessible areas shall not have limbs below 80".

DATE:
05-31-16
PROJECT NO:
16-039
DRAWING NAME:
LANDSCAPE PLAN
SHEET NO:

LANDSCAPE PLAN

Scale: 1/16"=1'-0"

PLANTING NOTES:

CURVED TRUNK PALM PLANTING DETAIL

GRADE "A"

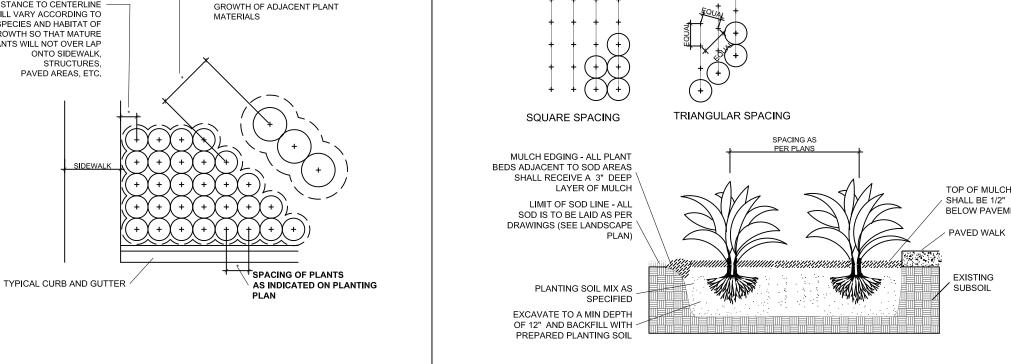
2" LAYER OF NEW /

EXISTING SUBSOIL

BACKFILL SOIL

-All plant material is to be Florida Number 1 or better pursuant to the Florida Department of Agriculture's Grades and Standards for Nursery Plants.

MULCH EDGING - ALL PLANTING


TYPICAL SHRUB PLANTING DETAIL

BEDS ADJACENT TO SOD AREAS SHALL RECEIVE A 4"-6" DEEP

- -All plants are to be top dressed with a minimum 3" layer of Melaleuca mulch, Eucalyptus mulch or equal.
- -Planting plans shall take precedence over plant list in case of discrepancies.

SAND; BURIED 3"

- -No changes are to be made without the prior consent of the Landscape Architect and Owner. Additions and or deletions to the plant material must be approved by the project engineer.
- -Landscape Contractor is responsible for providing their own square footage takeoffs and field verification for 100% sod coverage for all areas specified.
- All landscape areas are to be provided with automatic sprinkler system which provide 100% coverage, and 50% overlap.
- All trees in lawn areas are to receive a 24" diameter mulched saucer at the base of the trunk.
- Trees are to be planted within parking islands after soil is brought up to grade. Deeply set root balls are not acceptable.
- Planting soil for topsoil and backfill shall be 50/50 mix, nematode free. Planting soil for annual beds to be comprised of 50% Canadian peat moss, 25% salt free coarse sand and 25% Aerolite.
- Tree and shrub pits will be supplemented with "Agriform Pells", 21 gram size with a 20-10-5 analysis, or substitute application accepted by Landscape Architect. Deliver in manufacturer's standard containers showing weight, analysis and name of manufacturer.

SOD NOTES:

TYPICAL CONTAINER SPACING DETAIL

-Sod is to be grade "A" weed free.

-All areas marked "LAWN" shall be solid sodded with St. Augustine 'Floratam' solid sod. See limit on plan. All areas marked 'Bahia Grass' shall be solid sodded with Paspalum.

TYPICAL GROUNDCOVER PLANTING DETAIL

-Provide a 2" deep blanket of planting soil as described in planting notes this sheet. Prior to planting, remove stones, sticks, etc. from the sub soil surface. Excavate existing non-conforming soil as required so that the finish grade of sod is flush with adjacent pavement or top of curb as well as adjacent sod in the case of sod patching.

-Place sod on moistened soil, with edges tightly butted, in staggered rows at right angles to slopes.

-Keep edge of sod bed a minimum of 18" away from groundcover beds and 24" away from edge of shrub beds and 36" away from trees, measured from center of plant.

-Sod Shall be watered immediatley after installation to uniformily wet the soil to at least 2" below the bottom of the sod

-Excavate and remove excess soil so top of sod is flush with top of curb or adjacent pavement or adjacent existing

GENERAL NOTES:

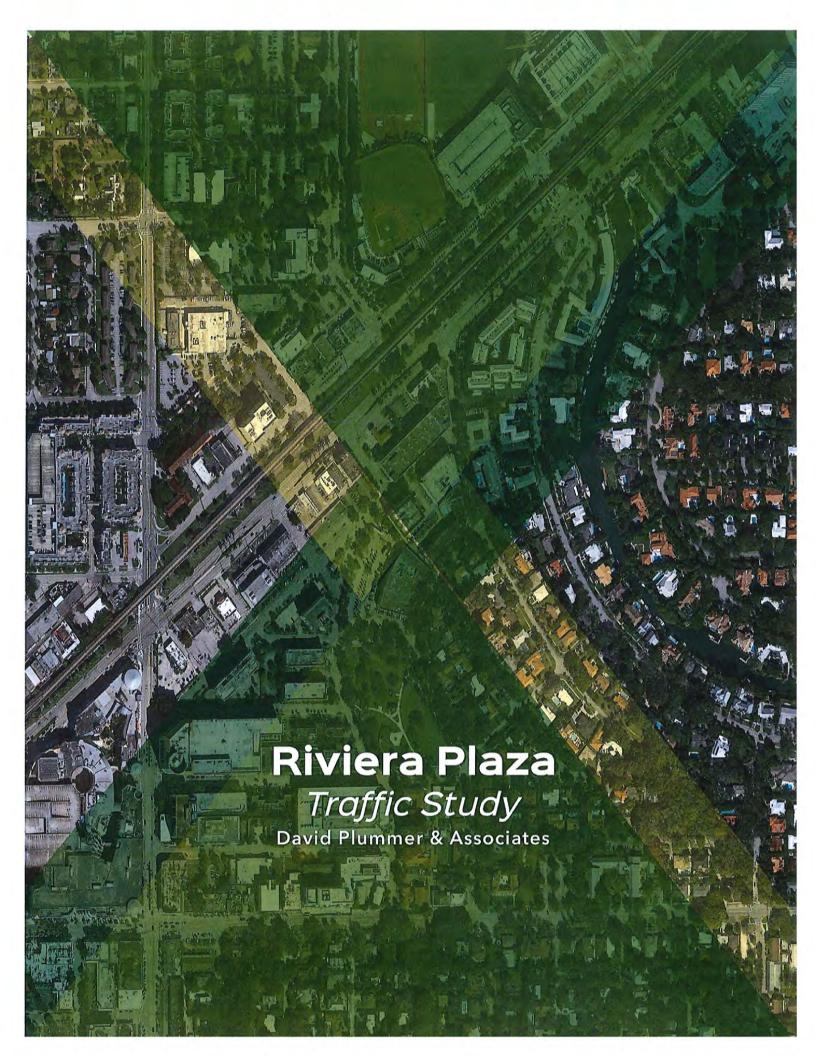
-The Landscape Contractor is to locate and verify all underground and overhead utilities prior to beginning work. Contact proper utility companies and / or General Contractor prior to digging for field verification. The Owner and the Landscape Architect shall not be responsible for any damages to utility or irrigation lines (see Roadway Plans for more utility notes).

-Landscape Contractor is to verify all current drawings and check for discrepancies and bring to the attention of the Landscape Architect prior to commencing with the work.

-All unattended and unplanted tree pits are to be properly barricaded and flagged during installation.

-All planting plans are issued as directives for site layout. Any deviations, site changes, etcetera are to be brought to the attention of the Landscape Architect for clarification prior to installation.

NDY WITKIN LA No. 00008


DATE: 05-31-16 PROJECT NO: 16-039 DRAWING NAME: ANDSCAPE DETAILS SHEET NO:

Prepared By: David Plummer & Associates

Prepared For: 13th Floor Investment

Prepared In: May 2017

DPA Job #: 16180

1750 PONCE DE LEON BOULEVARD, CORAL GABLES, FLORIDA 33134 305 447-0900 ● FAX: 305 444-4986 ● EMAIL: DPA@DPLUMMER.COM

Responses to the Atkins Comments on Behalf of City of Coral Gables (December 29, 2016)

Re: Review of South Dixie Traffic Impact Analysis dated June 2016

1. Page 14, Exhibit 4 - Existing Intersection Capacity Analysis: How was it determined which facilities would receive the additional delay percentages to the LOS E local capacity threshold? Were pedestrian movements considered in the analyses?

Response: Based on the Coral Gables comprehensive plan, roadways and parallel roads within ½ mile where commuter rail or express bus public transit service exists, shall operate at no greater than 150% of their capacity. Since the Metrorail is located along US-1, the LOS standard E+50% was used for approaches along US 1 as well as intersection approaches where the roadway is parallel. Yes, pedestrian volumes were included in the analysis.

2. Page 16, Committed Developments: It would be useful to show the committed development locations in Exhibit 7 in order to better understand how the committed trips were distributed.

Response: Exhibit 7 was revised to include the committed developments location.

Page 16, Committed Developments: The Gables Waterway trip generation is not included within Appendix F. Was it reflected in the analysis? It should be included in the documentation and in the analysis.

Response: Gables Waterway was included in the analysis. Supporting documentation has been included in Appendix F, as requested.

4. Page 17, Future without Project Intersection Capacity Analysis: Exhibit 7 provides the Total Volumes with committed development trips and background traffic. These volumes are difficult to reconcile with the committed development trips. Please provide documentation (map/table) of committed development trips distribution only.

Response: A volume development worksheet has been included in Appendix D. This worksheet includes all components of future traffic projections including background growth, committed development trip distributions and project traffic distribution used in the analysis.

 Page 17, Project Trip Generation: The trip generation tables in Appendix G show zero internal trips being generated, but Exhibit 8 lists internalization rates of 2.1% (AM) and 1.1% (PM) based on the Trip Generation Manual User's Guide and Handbook. Please clarify the source of these percentages.

Response: An internal matrix was developed between Supermarket and the proposed retail. Although ITE's Trip Generation Manual latest edition does not provide Unconstrained Internal Capture Rates

between Retail uses, the 9th edition provides Retail-Retail interaction rates which range between 20-30%. A conservative unconstrained internal capture rate of 5% between supermarket and other retail uses was used in the analysis. The matrix is included in Appendix G. The reported internalization rates reported are based on these matrices.

6. Page 21, Project Trip Generation: Please explain or show the methodology for how the 21.5 KSF Specialty Retail land use as noted on Pages 3 and 4 was decreased to 10.8 KSF in Exhibit 8. The 10.8 KSF noted may just be a typo because that size was originally proposed in the methodology letter, but it appears a custom rate was used for the AM and PM peaks. Using Land Use Code 820 there would be a total of 147 AM and 58 PM peak hour trips. Exhibit 8 shows a total of 23 AM and 73 PM peak hour trips. Please clarify what was done, and update all analyses and documentation if needed.

Response: The correct number for specialty retail is 21,533 SF. The 10,830 SF was carried over from a previous development plan. Exhibit 8 was revised to reflect the currently proposed square feet for the specialty retail component of the project. Regardless of the typographical error, the trip generation for this component was performed for 21,533 SF using trip generation rates and/or equations for Specialty Retail (Land Use Code 826) as proposed in the methodology. The ITE worksheet is included in Appendix G. Since ITE does not provide a rate or equation for the AM peak hour for this use, the AM to daily ratio for Shopping Center was used. Attachment A shows ITE's trip generation including the shopping center use along with the calculations for the AM peak hourtrip generation.

7. Page 21, Project Trip Generation: At the bottom of Exhibit 8, it is acceptable to show the net new trips of 69 trips in the AM Peak Hour and 144 trips in the PM Peak Hour. However, the text states that existing site trips were "deducted from the study area" per the statement at the bottom of Page 20. Please clarify whether existing traffic volumes were reduced to account for existing site uses (and how that was done) or only the net new site trips were distributed to the roadway network. Based on the response, modify the report to clearly describe the process followed.

Response: Because access for the proposed uses is different than that in the existing shopping center, a distribution of trips was established for trips associated with the existing 55,161 SF shopping center. These trips were deducted from the study area intersections based on this distribution. Project traffic was then added to the study area based on the distribution reflected in Exhibit 10. Volume development worksheets (included in Appendix D) reflect the assignement of this use.

8. Page 24, Future with Project Intersection Capacity Analysis: Notes below Exhibit 11 state that a Signal Timing Improvement was conducted. Please confirm that analyst reviewed existing signal timing plans to verify intersections are not part of an existing coordination plan. If they are part of a coordination plan please ensure revised timing improvements are feasible with existing coordination plans. Were pedestrian movements considered in the analyses?

Response: The recommended signal timing improvements will be sent to the Miami-Dade County Traffic Signals and Signs Division for review. It is customary that once the proposed project is open to traffic, their site engineer will observe operations at the intersection during the peak hours. Based on

these observations, county will further adjust signal timing and signal coordination, as needed. Pedestrian volumes were included in the analysis.

9. Page 27, Circulation Plan: Will bicycle racks be provided somewhere within the project?

Response: Response to be provided by others.

10. Several exhibits have incorrect page numbers. Please revise and compare to the Table of Contents.

Response: Page numbers have been changed as needed.

11. Appendix A – Site Plan:

- A. The truck loading zone is accessed from Madruga Ave. and will require a back-in movement. While the room to do this within the public street and onsite appear adequate, it is noted that such maneuvers will interrupt traffic flow on Madruga Ave. in both directions of flow. What is the expected frequency of such truck delivery arrivals? Will store staff assist with traffic control during the back-in maneuvers?
- B. Based on dimensions in the site plan, car parking spaces appear to be sized nominally at 9.5 ft. wide by 18 ft. long. This should accommodate most cars, but there will be some longer cars and trucks which may extend into the aisles, as happens with surface parking lots.
- C. On level 3, at the southwest corner of the deck, there are spaces in the dead-end aisle that will be somewhat difficult to exit from due to the configuration.
- D. Are particular spaces to be designated for employee parking only?
- E. On level 2, the radius to enter the ramp at the south end of the deck to go up to level 3 is minimal, requiring a motorist to swing into the opposing downward lane around a blind corner due to the service elevator stack. This appears to be an undesirable configuration. Was the site triangle checked? Can it be improved?
- F. On levels 2 and 3, there are several potential "right-side to right-side" right turns which will require motorists to swing into the opposing aisle lanes, since there is essentially no turn radius provided. These movements, while slow speed in nature, are also partially blocked by parked vehicles. This configuration may have been a conscious choice by the designer and may meet design criteria applicable to this project, but this review notes the condition created by the design.

Response: Response to be provided by others.

ATTACHMENT A

Trip Generation Summary

Alternative: Alternative 1

Phase:

Project: Publix

Open Date:	10/12/2016
Analysis Date:	10/12/2016

	W	Weekday Average Daily Trips			Weekday AM Peak Hour of Adjacent Street Traffic			Weekday PM Peak Hour of Adjacent Street Traffic				
ITE Land Use	*	Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total
820 Shoping Ctr		1252	1251	2503		38	23	61		103	111	214
21.53 Gross Leasable Area 1000 SF												
826 Retail		477	477	954						32	41	73
21.53 Gross Leasable Area 1000 SF												
850 SUPERMARKET 1		2889	2888	5777		119	73	192		273	263	536
56,5 Gross Floor Area 1000 SF												
Jnadjusted Volume		4618	4616	9234		157	96	253		408	415	823
Internal Capture Trips		0	0	0		0	0	0		0	0	0
Pass-By Trips		0	0	0		0	0	0		132	132	264
/olume Added to Adjacent Streets		4618	4616	9234		157	96	253		276	283	559

Total Weekday Average Daily Trips Internal Capture = 0 Percent

Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Specialty Retail (LUC 826) AM Peak Hour Tgen = $61 / 2503 \times 954 = 23 \text{ vph}$

Inbound: 38 / 61 * 23 = 14 vph Outbound: 23 / 61 * 23 = 9 vph

^{* -} Custom rate used for selected time period.

Table of Contents

LIST	OF EX	HIBITS	i
EXEC	UTIVE	SUMMARY	ii
1.0	INTRO	DDUCTION	
1.1		ect Background	
1.2	Stud	dy Objective	1
1.3	Stud	dy Area and Methodology	3
2.0	DATA	COLLECTION	5
2.1	Roa	dway Characteristics	5
2.2	Traf	fic Counts	6
2.3		rsection Data	
2.4	Wal	king / Other Modes of Transportation	9
2.5		rsection Capacity Analysis	
3.0		NED AND PROGRAMED ROADWAY IMPROVEMENTS	
4.0	FUTU	RE TRAFFIC CONDITIONS	13
4.1	Bac	kground Traffic and Committed Developments	13
4.2	Futu	re without Project Intersection Capacity Analysis	14
4.3		ect Trip Generation	
4.4	Proj	ect Trip Assignment	19
4.5	Futu	re with Project Intersection Capacity Analysis	21
5.0		JLATION PLAN	
6.0		LUSIONS	
	dix A:	Site Plan	
	dix B:	Methodology	
	dix C:	Data Collection	
	dix D:	Intersection Capacity Analysis Worksheets	
	dix E:	Background Growth Rate	
	dix F:	Committed Roadway & Development Information	
	dix G:	Project Trip Generation Bus Route Information	
Thher	CIA II.	Dus Route information	

LIST OF EXHIBITS

Exhibit 1: Location Map	2
Exhibit 2: Existing Lane Configuration	7
Exhibit 3: Existing AM and PM Peak Period	8
Exhibit 4: Existing Intersection Capacity Analysis	11
Exhibit 5: Committed Development Trip Generation	14
Exhibit 6: Future without Project Intersection Capacity Analysis	15
Exhibit 7: Future without Project AM and PM Peak Hour Traffic Volumes	15
Exhibit 8: Project Trip Generation Summary	18
Exhibit 9: Cardinal Distribution	19
Exhibit 10: Project Trip Distribution	20
Exhibit 11: Future with Project Intersection Capacity Analysis	22
Exhibit 12: Future with Project AM and PM Peak Hour Traffic Volumes	23
Exhibit 13: Circulation Plan - Bus Routes	25
Exhibit 14: Circulation Plan - Mobility	26

EXECUTIVE SUMMARY

The Riviera Plaza project will be located at 1542 South Dixie Highway in Coral Gables, Florida. The site is located within the Gables Re-development Infill District (GRID), the city's traffic concurrency exception area. The project proposes to replace an existing 55,161 SF shopping center with the new development consisting of a 56,500 SF supermarket and 21,533 SF specialty retail. Access to and from the proposed retail will be provided on a full access two-way driveway located on Yumuri Street, and an outbound only access to Madruga Avenue. Access to above ground level parking garage is provided via a ramp accessing Madruga Avenue and providing full two-way access. Parking is provided both at ground level and above ground in the garage. A total of 32 ground spaces and 262 spaces in the garage are provided.

An assessment of the traffic impacts associated with the proposed project was performed in accordance with the requirements of the city of Coral Gables. The analysis shows that except for the S Dixie Highway/Yumuri Street and Red Road/Madruga Avenue intersections, all intersections analyzed will operate within the adopted LOS standards with signal timing improvements.

As with the existing and future without project conditions, the minor approach of the S Dixie Highway/Yumuri Street intersection continues to operate at low levels of service and experience some delays. In addition, the minor approach of Madruga Avenue will exceed the adopted standard during the PM peak hour. This is due to the fact that for un-signalized intersections the software tends to overestimate delay measurements for the minor approaches and does not account for gaps in traffic created by the upstream signalized intersections to allow the minor street traffic flow. If the minor approach delays do reach the software estimates, observed behavior shows drivers will find alternate routes. All other intersections analyzed are projected to operate within the city's LOS standard during the morning and afternoon peak periods. It should be noted that project traffic represents less than 5% of the overall volumes at both intersections.

In addition, a mobility and circulation plan was completed as part of the study. The plan shows that the project study area is currently served by various Miami-Dade Transit bus routes and the Metrorail. The project is located in an area that is conducive for pedestrian and bicycle activities providing a linear bike path parallel to US 1, ample sidewalks, and crosswalks.

1.0 INTRODUCTION

1.1 Project Background

The Riviera Plaza project will be located at 1542 South Dixie Highway in Coral Gables, Florida (See Exhibit 1). The site is located within the Gables Re-development Infill District (GRID), the city's traffic concurrency exception area. The project proposes to replace an existing 55,161 SF shopping center with the new development consisting of a 56,500 SF supermarket and 21,533 SF specialty retail. Access to and from the proposed retail will be provided on a full access two-way driveway located on Yumuri Street, and an outbound only access to Madruga Avenue. Access to above ground level parking garage is provided via a ramp accessing Madruga Avenue and providing full two-way access. Parking is provided both at ground level and above ground in the garage. A total of 32 ground spaces and 262 spaces in the garage are provided. The site plan is provided in Appendix A.

This traffic study is consistent with the methodology previously discussed with and agreed to by the city of Coral Gables Public Works Department. The methodology is provided in Appendix B. Project build-out is anticipated by 2018.

1.2 Study Objective

The purpose of the study is to provide a traffic study that meets the requirements of the City of Coral Gables for the project. This study includes vehicular flow, trip generation, and intersection analyses.

Project Location

Exhibit 1

Location Map

1.3 Study Area and Methodology

The analysis undertaken follows the study methodology previously discussed with and approved by the City of Coral Gables Public Works Department (See Appendix B). A synopsis of the methodology is as follows:

- Traffic Counts (Intersections) Two-hour turning movement counts were collected for the AM (7-9 AM) and PM (4-6 PM) hours on a typical weekday at the following intersections:
 - o US-1 / Yumuri Street (U)
 - o US-1 / SW 57th Avenue (S)
 - O Yumuri Street / Madruga Avenue (U)
 - o SW 57th Avenue / Madruga Avenue (U)
 - Sunset Drive / Yumuri Street (S)
 - o Sunset Drive / SW 57th Avenue (S)

S= Signalized U=Un-signalized

- Signal Location and Timing Existing signal phasing and timing for the signalized intersection were obtained from Miami-Dade County.
- Trip Generation project trips were estimated using trip generation information published by the Institute of Transportation Engineers (ITE) Trip Generation Manual, 9th Edition.
- Trip Distribution / Trip Assignment Net new external project traffic was assigned to the adjacent street network using the appropriate cardinal distribution from the Miami-Dade Long Range Transportation Plan Update, published by the Metropolitan Planning Organization. Normal traffic patterns will also be considered when assigning project trips.
- Background Traffic Available Florida Department of Transportation (FDOT) and Miami-Dade County (MDC) counts were consulted to determine a growth factor consistent with historical annual growth in the area. The growth factor was applied to the existing traffic volumes to establish background traffic.
- Future Transportation Projects The 2015 TIP and the 2040 LRTP was reviewed and considered in the analysis at project build-out.

- Committed Developments Committed developments were provided by the city.
- Intersection capacity analysis was done using the Synchro software. Operation analysis at driveways providing access to/from the site was conducted.
- Multimodal Considerations Pedestrian, bicycle and transit facilities are defined in a Circulation Plan. Existing bus and mass transit routes including schedule and bus stop locations was discussed as part of the study.

2.0 DATA COLLECTION

Data collection for this study included roadway characteristics, intersection traffic counts, signal timing, and seasonal adjustment factors. The data collection effort is described below.

2.1 Roadway Characteristics

South Dixie Highway (US-1)

US-1 is a state principal arterial state roadway that provides northeast/southwest access throughout Miami-Dade County. Within the study area, *US-1* is a two-way, six-lane, divided roadway. Onstreet parking is not permitted. The Florida Department of Transportation (FDOT) has jurisdiction over *US-1*. The posted speed limit is 40 mph.

Yumuri Street

Yumuri Street is a local roadway that provides north/south access from South Dixie Highway (US - 1) to Sunset Drive (SW 72nd Street). Yumuri Street is a two-way, two-lane, undivided roadway with on-street parallel parking on both sides of the roadway. The City of Coral Gables operates and maintains Yumuri Street. The posted speed limit is 30 mph.

Red Road (SW 57th Avenue)

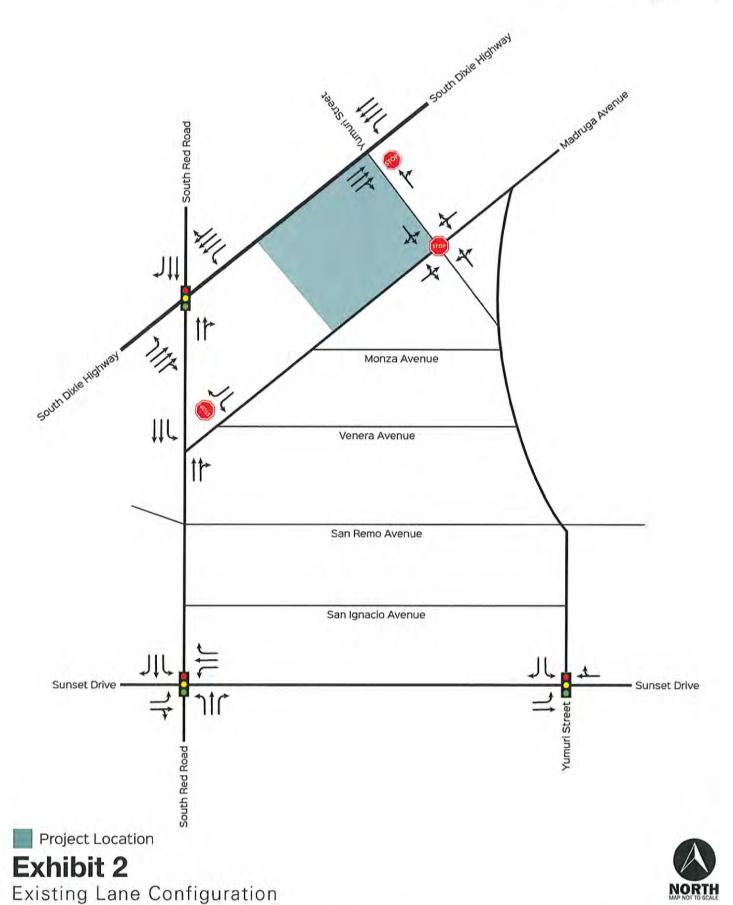
SW 57th Avenue is a county minor arterial that provides north/south access throughout Miami-Dade County. SW 57th Avenue is a two-way, four-lane, divided roadway with on-street parallel parking on portions of the roadway. Miami-Dade County operates and maintains SW 57th Avenue. The posted speed limit is 35 mph.

Madruga Avenue

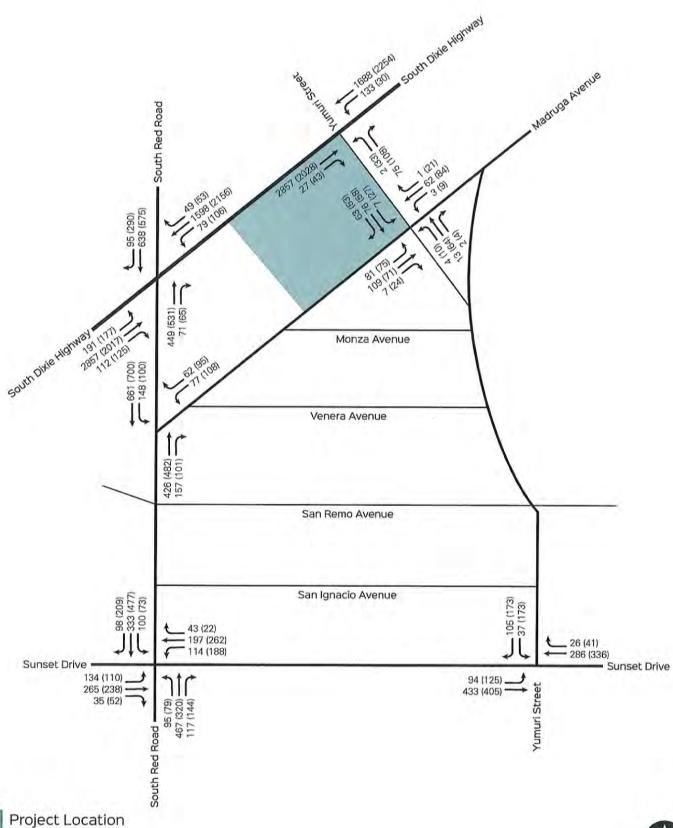
Madruga Avenue is a local roadway that provides northeast/southwest access within the study area. Within the study area, *Madruga Avenue* is a two-way, two-lane, undivided roadway with on-street

parallel parking on both sides of the roadway. The City of Coral Gables operates and maintains *Madruga Avenue*. The posted speed limit is 30 mph.

Sunset Drive (SW 72nd Street)


SW 72nd Street is a county minor arterial that provides east/west access throughout Miami-Dade County. Within the study area SW 72nd Street is a two-way, two-lane, undivided roadway with onstreet parallel parking on portions of the roadway. Miami-Dade County operates and maintains SW 72nd Street. The speed limit is not posted within the study limits.

2.2 Traffic Counts


Vehicle turning movement counts were collected on June 1, 2016 and June 2, 2016 at the study intersections during the AM (7-9 AM) and PM (4-6 PM) peak periods. The counts were adjusted to reflect the average annual daily traffic conditions using the latest weekly volume adjustment factors obtained from FDOT. A weekly volume adjustment factor of 1.01 (Miami-Dade County South) corresponding to the dates of the counts was used. Traffic counts and FDOT season factors are provided in Appendix C.

2.3 Intersection Data

Signal timing data was obtained from Miami-Dade County for the signalized intersection analyzed in this study. This information was used for the signal phasing and timing required for the intersection capacity analysis. A field survey was also conducted to obtain the intersection lane configurations to be used in the intersection analysis. Exhibit 2 shows the existing lane configurations at the analyzed intersections. Existing volumes for the morning and afternoon peak period at the intersections analyzed are shown in Exhibit 3. The signal timings are also provided in Appendix C.

DAVID PLUMMER & ASSOCIATES I Project No. 16180

Exhibit 3

Existing AM and PM Peak Hour Traffic Volumes

2.4 Walking / Other Modes of Transportation

The Metrorail system is a 25-mile dual track, elevated rapid transit system that provides service to Miami International Airport (MIA) and runs from Kendall through South Miami, Coral Gables, and downtown Miami; to the Civic Center/Jackson Memorial Hospital area; and to Brownsville, Liberty City, Hialeah, and Medley in northwest Miami-Dade, with connections to Broward and Palm Beach counties at the Tri-Rail/Metrorail transfer station. The 23 accessible Metrorail stations are about one mile apart, providing easy access for bus riders, pedestrians, and passengers who are dropped off and picked up. The University Station is located within ½ a mile from the project. The area is provided with sidewalks on both sides of US 1 and a pedestrian overpass accessing the station is currently under construction at Mariposa Court. In addition, Miami-Dade Transit provides several bus stops at Metrorail stations for easy transfer to areas not serviced by Metrorail. All service vehicles (Metrobus, Metrorail, Coral Gables Trolley, etc.) have equipment to service bikers. A bike lane is provided on the north side of US1 running from Brickell to the Kendall Area.

Plans for the area include the *10-mile Underline*, which will be Miami-Dade County's first mobility corridor integrating all modes of transit. The plan calls for transforming the threadbare path under the Metrorail along South Dixie Highway into a garland of verdant gardens, playgrounds and recreational spots linked by 10 miles of side-by-side bike and pedestrian trails. The limits expand from the *downtown lip of the Miami River*, where the plan calls for an outdoor viewing "room" composed of cascading stone steps, to *suburban Dadeland*, where it contemplates workout stations and sports courts cradled between Metrorail's two southernmost stations. The proposed Underline would embed alternative transportation within a long, slender park to create a potentially defining urban amenity.

2.5 Intersection Capacity Analysis

The proposed project is located within the city of Coral Gables Redevelopment and Infill District (GRID), which is a Transportation Concurrency Area established by the city to promote development within its boundaries. In essence, this ordinance establishes that roadways within the geographical area of the GRID are exempt from the citywide traffic LOS Standards.

The SYNCHRO software was used to perform intersection capacity analysis at the analyzed intersections. Synchro is a macroscopic analysis and optimization software application that implements the Intersection Capacity Utilization method for determining intersection capacity. Exhibit 4 shows the resulting LOS for existing conditions during morning and afternoon peak periods. The results show that although the overall level of service of the intersection of Sunset Drive/Red Road meet the adopted level of service standards, the eastbound and westbound approaches currently exceed these during both AM and PM peak hours. All other intersections analyzed operate within the city's LOS standards. Analysis worksheets are included in Appendix D.

Exhibit 4: Existing Intersection Capacity Analysis Weekday AM and PM Peak Period Conditions

Intersection	Signalized/ Un-signalized	Direction	AM Peak LOS	PM Peak LOS	LOS Standard
US -1 / Yumuri Street	Un-signalized	NB	F	F	Е
US -1 / SW 57th Avenue	Signalized	NB SB EB WB Overall	E + 30% E + 42% C B D	E + 38% E + 14% C C D	E + 50% E + 50% E E NA
Yumuri Street / Madruga Avenue	Un-signalized	NB SB EB WB	A A A	A A A	E E E + 50% E + 50%
SW 57th Avenue / Madruga Avenue	Un-signalized	WB	Е	E	E + 50%
Sunset Drive / Yumuri Street	Signalized	SB EB WB Overall	C A B B	C A B B	E E E
Sunset Drive / SW 57th Avenue	Signalized	NB SB EB WB Overall	C C F F	В С F Б	E E E E

Source: David Plummer & Associates

3.0 PLANNED AND PROGRAMED ROADWAY IMPROVEMENTS

The <u>2017 Miami-Dade County Transportation Improvement Program (TIP)</u> and the <u>2040 Long Range Transportation Program</u> were reviewed to identify any programmed or planned projects within the limits of the study area established. These documents show no officially programmed or planned capacity improvement projects within the study area.

4.0 FUTURE TRAFFIC CONDITIONS

4.1 Background Traffic and Committed Developments

Average Daily Traffic counts published by the Miami-Dade Public Works Department and the FDOT were reviewed to determine historic growth in the area. Growth trend analysis indicated that the area growth has been negative in the past 5 years. For purposes of this analysis, a conservative 0.5% annual growth rate was used for the study. Historic growth trend documentation is included in Appendix E.

The city was consulted to determine any committed development in the vicinity of the project site. The following four committed developments were considered for estimating future traffic volumes in this study:

- Gables Waterway
- Shoma Park Tower
- Paseo de la Riviera
- UHealth

Exhibit 5 provides a tabulation of AM and PM peak hour trips generated by the committed development, along with the approved land uses. Committed development information is included in Appendix F.

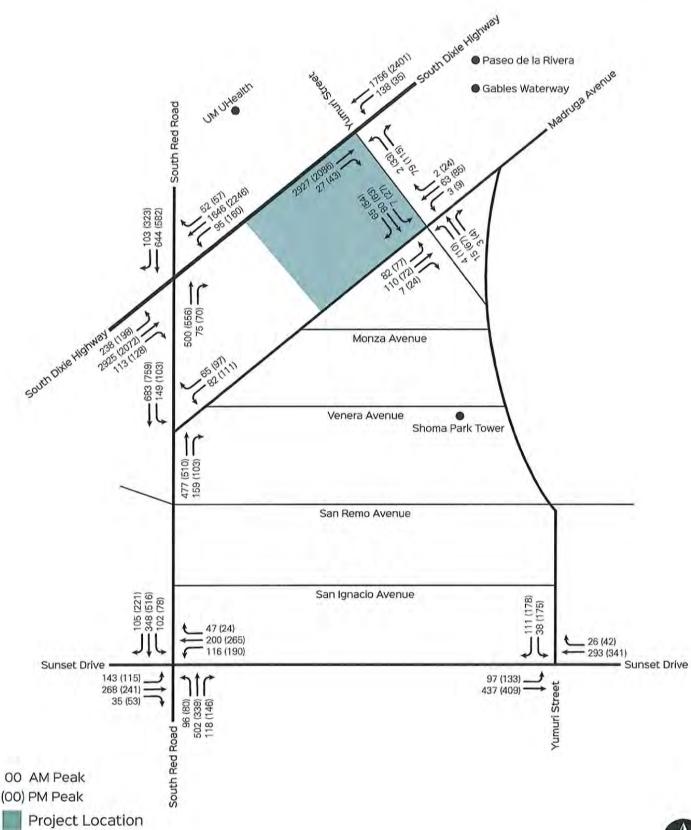
Exhibit 5: Committed Development Trip Generation

Project	ITE Land Use	Size/Units		1 Peak H ehicle Tr		PM Peak Hour Vehicle Trips				
3		estant to the second	In	Out	Total	In	Out	Total		
Gables Waterway	Condominium (Land Use 230)	20 DU	2	12	14	11	5	16		
Shoma Park	Condominium (Land Use 230)	65 DU	6	31	37	28	14	42		
Tower	Specialty Retail (Land Use 826)	3,401 SF	0	0	0	4	5	9		
	Apartment (Land Use 223)	236 DU	21	50	71	54	38	92		
Paseo de la	Hotel (Land Use 310)	252 Rooms	78	56	134	78	73	151		
Riviera	Restaurant (Land Use 931)	4,380 SF	0	0	0	22	11	33		
	Specialty Retail (Land Use 826)	14,094 SF	0	0	0	17	21	38		
UHealth	Medical Office/ Surgery/ Imaging (Land Use 720)	114,580 SF	216	58	274	92	237	329		
Gables	01100		255	68	323	105	283	388		

^{*} Gross vehicle trip ends. Appendix D reflects adjustments for existing land uses, pass-by, internal, and transit trips.

4.2 Future without Project Intersection Capacity Analysis

Future without project conditions was obtained by adding background traffic with committed development trips. Exhibit 6 shows the resulting LOS for morning and afternoon peak conditions for future without project. Exhibit 7 shows the projected turning movements for future without project traffic. All intersections operate within the city's LOS standards (LOS E). Capacity worksheets are included in Appendix D.


Exhibit 6: Future without Project Intersection Capacity Analysis Weekday AM and PM Peak Period Conditions

Intersection	Signalized/ Un-signalized	Direction	AM Peak LOS	PM Peak LOS	LOS Standard
US -1 / Yumuri Street	Un-signalized	NB	F	F	Е
US -1 / SW 57th Avenue	Signalized	NB SB EB WB Overall	E + 49.8% E + 44% C C D	E + 55% E + 15% C C D	E + 50% E + 50% E E NA
Yumuri Street / Madruga Avenue	Un-signalized	NB SB EB WB	A A A A	A A A	E E E + 50% E + 50%
SW 57th Avenue / Madruga Avenue	Un-signalized	WB	E	E + 9%	E + 50%
Sunset Drive / Yumuri Street	Signalized	SB EB WB Overall	C A B B	C A B	E E E
Sunset Drive / SW 57th Avenue	Signalized	NB SB EB WB Overall	C C F E D	В С F F D	E E E E

Source: David Plummer & Associates

4.3 Project Trip Generation

Trip generation for the proposed project and the existing use was estimated using the Institute of Transportation Engineers (ITE) <u>Trip Generation Manual</u>, 9th Edition. This manual provides gross trip generation rates and/or equations by land use type. These rates and equations estimate vehicle trip ends at free-standing site driveways. See Appendix G for project trip generation worksheets.

Exhibit 7

Future Without Project AM & PM Peak Hour Traffic Volumes

The proposed development plan incorporates general retail uses and a supermarket. Although ITE does not provide data of interaction between these uses, it is likely that some interaction would occur. Patrons of the supermarket are likely to use other facilities in the specialty retail such as a fast food restaurant, dry cleaners or a retail shop, and vice-versa. An internalization matrix, included in Appendix G, was developed to establish internal project trips. Because of the lack of data regarding this interaction, internalization was kept to a minimum between these uses.

Research shows that a percentage of retail trips to and from a site are "pass-by" trips. ITE describes pass-by as trips "attracted from traffic passing the site on an adjacent street". Pass-by trips are already using the existing roadway network. Pass-by trips were established based on the guidelines in the FDOT Site Impact Handbook.

The project site is located in an area where pedestrian; bike and transit activity is common between the existing site and surrounding properties. The project site is less than ½ a mile from the University Metrorail Station. Access to other routes and the Coral Gables Trolley are available through the Metrorail system. This area is also serviced by Miami-Dade transit bus routes. In addition, the proximity of University of Miami generates numerous pedestrian trips in this area. Census data for the area shows that other modes of transportation represent approximately 10% of the trips in the area. The project trip generation summary is provided in Exhibit 8.

The existing site is currently occupied by a 55,161 SF Shopping Center. Traffic generated is currently using the surrounding street network and is accounted for in the traffic counts. In order to avoid double counting, the trips generated by these uses were deducted from the study area. A trip distribution was established consistent with current access and parking location. Exhibit 8 also shows trips associated with this use.

Exhibit 8: Project Trip Generation Summary

Proposed ITE Land Use	G:_/III-:4-	AM	Peak Ho	ur	PM Peak Hour				
Designation ¹	Size/Units	In	Out	Total	In	Out	Total		
Supermarket (ITE LUC 850)	56,500 SF	119	73	192	273	263	536		
Specialty Retail Center ² (ITE LUC 826)	21,533 SF	14	9	23	32	41	73		
Subtotal Gross Trip	S	133	82	215	305	304	609		
Other Modes of Transportation	10%	-13	-8	-8 -21		-30	-61		
Internalization ³	AM 2.1% PM 1.1%	-2	-2	-4	-3	-3	-6		
Pass-By Trips ⁴ (Supermarket)	36%	-38	-23	-62	-87	-85	-172		
Net External Trips (Pro	posed)	80	49	129	184	186	370		

Existing ITE Land Use Designation ¹	Size/Units	AM Pe	ak Hour Trips	Vehicle	PM Peak Hour Vehicle Trips				
Designation		In	Out	Total	In	Out	Total		
Shopping Center (ITE LUC 820)	55,161 SF	67	41	108	193	209	402		
Transit / Pedestrian Trips	10%	-7	-4	-11	-19	-21	-40		
Pass-By Trips ⁴ (Shopping Center)	34%	-23	-24	-47	-68	-68	-136		
Net External Trips (E	xisting)	37	13	60	106	120	226		

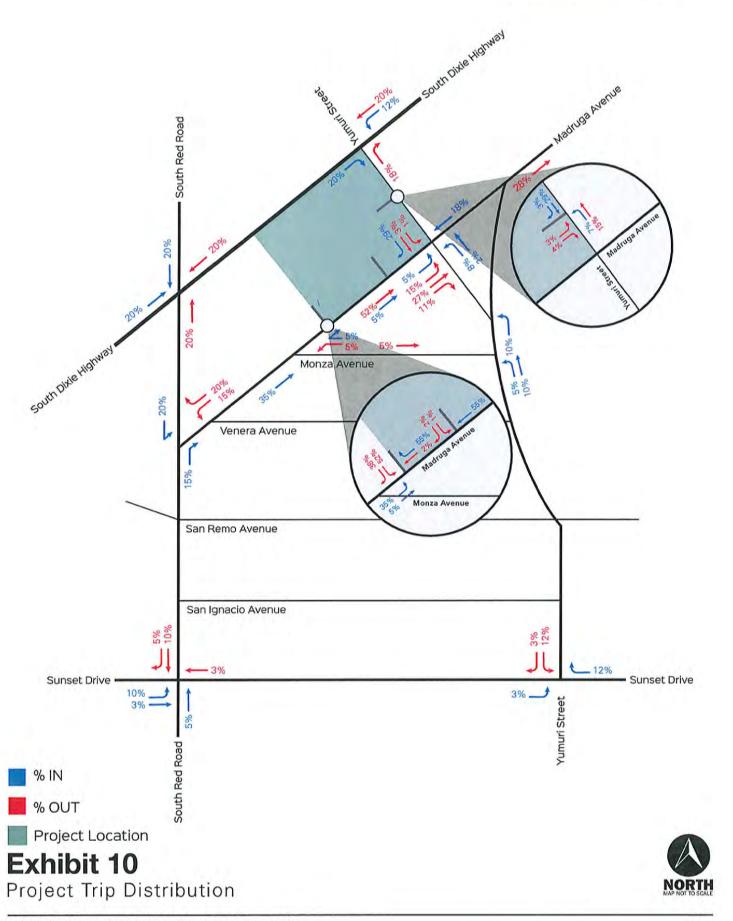
Proposed Uses	80	49	129	184	186	370
Existing Uses	-37	-13	-60	-106	-120	-226
Net New External Trips			69			144

¹Based on ITE <u>Trip Generation Manual</u>, Ninth Edition

²AM Peak Hour Vehicle Trips based on ratio of Land Use 820 AM Rates.

³ Internal capture is based on ITE <u>Trip Generation Manual User's Guide and Handbook</u>, Ninth Edition

⁴Pass by is based on ITE <u>Trip Generation Manual User's Guide and Handbook</u>, Ninth Edition, and adjusted for 10% threshold of adjacent roadway volume.


4.4 Project Trip Assignment

Project traffic was distributed and assigned to the study area using the Cardinal Distribution for TAZ 1103 shown in Exhibit 9. The Cardinal Distribution gives a generalized distribution of trips from a TAZ to other parts of Miami-Dade County. The distribution can be summarized as follows: 12.65% to the north, 35.91% to the south, 39.31% to the east, and 12.28% to the west. For estimating trip distribution for the project traffic, consideration was given to conditions such as the roadway network accessed by the project traffic, roadways available to travel in the desired direction, and attractiveness of traveling on a specific roadway. Project trip distribution for the proposed project is shown in Exhibit 10.

Exhibit 9: Cardinal Distribution (TAZ 1103)

Direction	Distribution
NNE	22.54%
ENE	10.51%
ESE	1.77%
SSE	1.50%
SSW	11.15%
WSW	27.57%
WNW	11.74%
NNW	13.37%
Total	100.00%

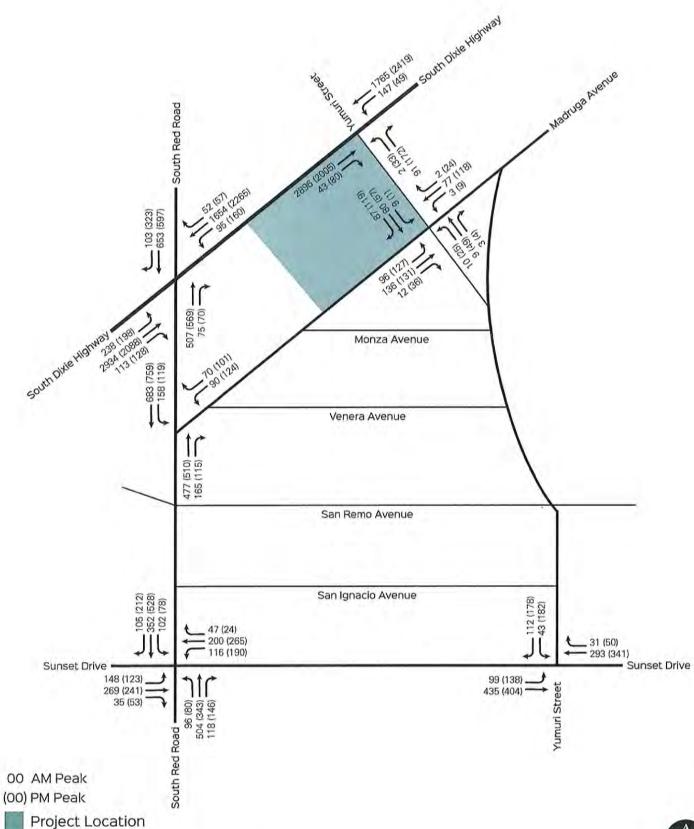
Source: Miami-Dade Long Range Transportation Plan

4.5 Future with Project Intersection Capacity Analysis

The trip assignments in the previous section, traffic projections for the project, committed developments and background growth were combined to obtain future traffic with project at the analyzed intersections. Exhibit 11 shows the resulting LOS for the morning and afternoon peak hour conditions for future with project. The results show that although the overall level of service of the intersections of S Dixie Highway/Red Road and Sunset Drive/Red Road are projected to meet the adopted level of service standards, several approaches will exceed (or continue to exceed) these standards during both AM and PM peak hours. Signal timing adjustments are recommended for all LOS standards to be met at the subject intersections.

As with the existing and future without project conditions, the minor approach of the S Dixie Highway/Yumuri Street intersection continues to operate at low levels of service and experience undesirable levels of delay. In addition, the minor approach of Madruga Avenue will exceed the adopted standard during the PM peak hour. This is due to the fact that for un-signalized intersections the software tends to overestimate delay measurements for the minor approaches and does not account for gaps in traffic created by the upstream signalized intersections to allow the minor street traffic flow. If the minor approach delays do reach the software estimates, observed behavior shows drivers will find alternate routes. All other intersections analyzed are projected to operate within the city's LOS standard during the morning and afternoon peak periods.

Capacity worksheets are included in Appendix D. Exhibit 12 shows the projected turning movement volumes for future with project.


Exhibit 11: Future with Project Intersection Capacity Analysis Weekday AM and PM Peak Period Conditions

Intersection	Signalized/ Unsignalized	Direction	AM Peak LOS	PM Peak LOS	LOS Standard
US -1 / Yumuri Street	Un-signalized	NB	F	F	Е
US -1 / SW 57th Avenue	Signalized	NB SB EB WB Overall	E + 44% ¹ E + 38% ¹ C C D	E + 39% ¹ E + 38% ¹ C C D	E + 50% E + 50% E E NA
Yumuri Street / Madruga Avenue	Un-signalized	NB SB EB WB	A A B A	A A B A	E E E + 50% E + 50%
SW 57th Avenue / Madruga Avenue	Un-signalized	WB	E + 38%	F	E + 50%
Sunset Drive / Yumuri Street	Signalized	SB EB WB Overall	C A B B	C A B B	E E E
Sunset Drive / SW 57th Avenue	Signalized	NB SB EB WB Overall	C C E ¹ E ¹	B C E ¹ E ¹	E E E E
Project Ramp / Madruga Avenue	Un-signalized	NBL SB	A B	A D	, NA
Project Driveway / Madruga Avenue	Un-signalized	SB	A	В	NA
Project Driveway / Yumuri Street	Un-signalized	NBL EB	A A	B A	NA NA

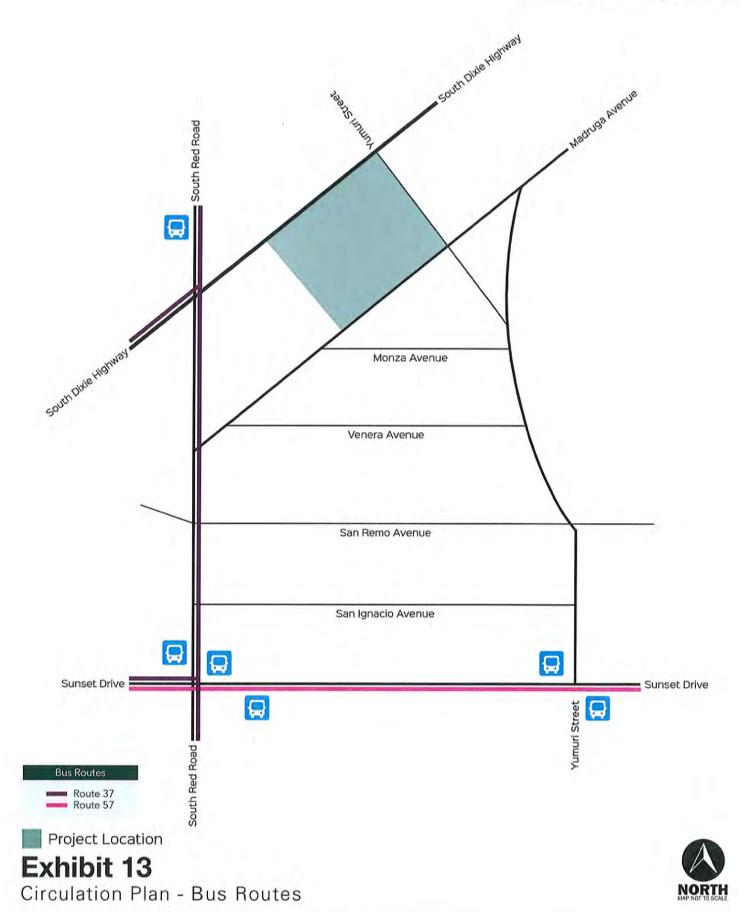
^{*}Eastbound/westbound movements are free-flow and do not receive a LOS.

1 with Signal Timing Improvements

Source: David Plummer & Associates

Exhibit 12

Future With Project AM and PM Peak Hour Traffic Volumes



5.0 CIRCULATION PLAN

Access to and from the proposed retail will be provided on a full access two-way driveway located on Yumuri Street, plus an additional outbound only access to Madruga Avenue. Access to the above ground level parking garage is provided via a ramp accessing Madruga Avenue and providing full two-way access. The project will also provide a separated delivery truck load/off-load area.

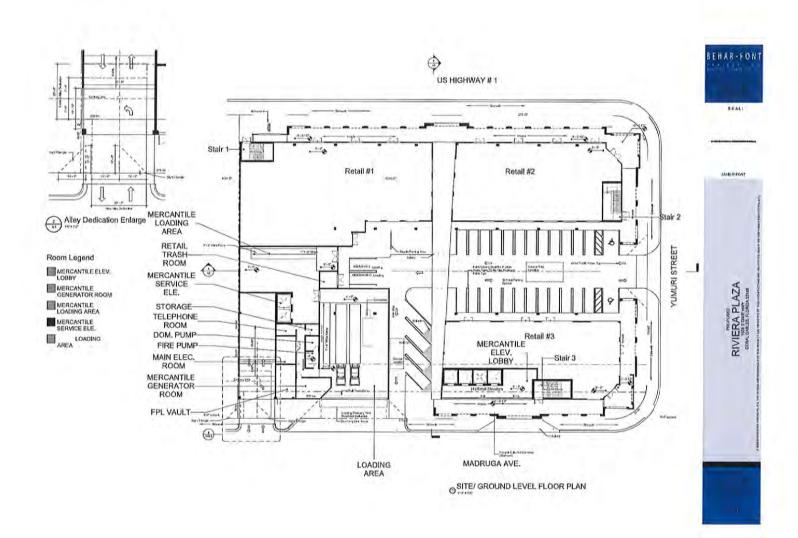
As previously discussed, The University Metrorail Station is located within ½ a mile from the project. Two bus routes (Routes 37 and 57) service this area of Coral Gables. The closest bus stops to the project site are located on Red Road south of South Dixie Highway. Exhibit 13 graphically portrays available transit including bus stops in the area. Appendix H provides the bus route maps and schedules.

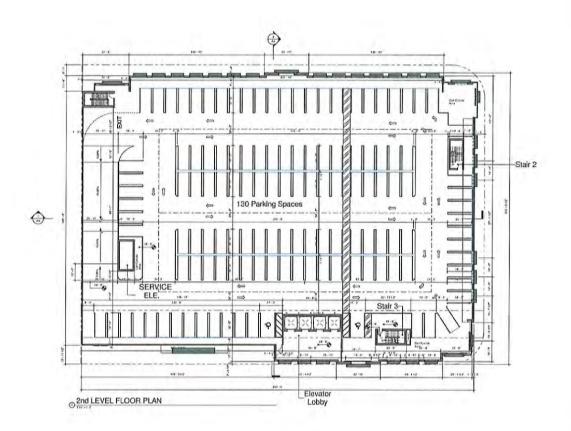
The area is provided with sidewalks on both sides of US 1 and a pedestrian overpass accessing the station is currently under construction at Mariposa Court. Signalized intersections adjacent to the site have clearly marked crosswalks and provide pedestrian signals. A bike path is provided under the elevated Metrorail (M-Path) and SW 72nd Street. The location of the project allows this pedestrian/bike path to cross directly adjacent to the site. Exhibit 14 portrays the site's circulation and mobility plan was prepared for the site. The plan shows the project driveways, location of street signals, delivery areas, sidewalk connections, and pedestrian crosswalks.

Project Location

Sidewalks Crosswalks Exhibit 14 Bike Lane

Circulation Plan - Mobility

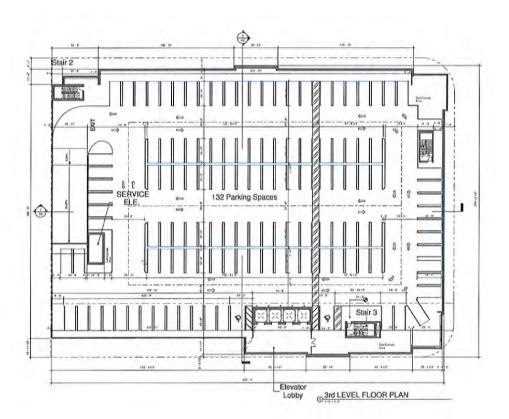

6.0 CONCLUSIONS


An assessment of the traffic impacts associated with the proposed project was performed in accordance with the requirements of the city of Coral Gables. The analysis shows that except for the S Dixie Highway/Yumuri Street and Red Road/Madruga Avenue intersections, all intersections analyzed will operate within the adopted LOS standards with signal timing improvements.

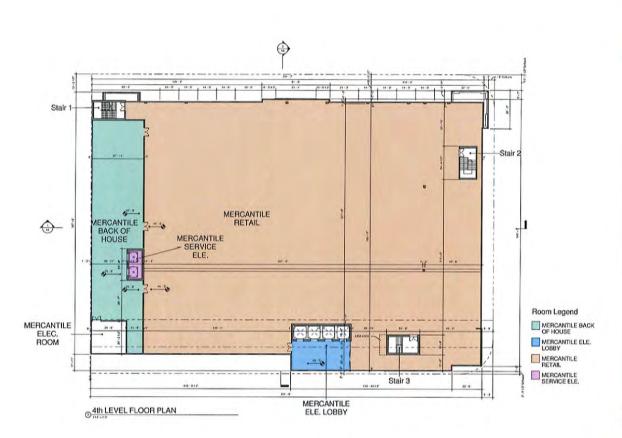
As with the existing and future without project conditions, the minor approach of the S Dixie Highway/Yumuri Street intersection continues to operate at low levels of service and experience some delays. In addition, the minor approach of Madruga Avenue will exceed the adopted standard during the PM peak hour. This is due to the fact that for un-signalized intersections the software tends to overestimate delay measurements for the minor approaches and does not account for gaps in traffic created by the upstream signalized intersections to allow the minor street traffic flow. If the minor approach delays do reach the software estimates, observed behavior shows drivers will find alternate routes. All other intersections analyzed are projected to operate within the city's LOS standard during the morning and afternoon peak periods. It should be noted that project traffic represents less than 5% of the overall volumes at both intersections.

In addition, a mobility and circulation plan was completed as part of the study. The plan shows that the project study area is currently served by various Miami-Dade Transit bus routes and the Metrorail. The project is located in an area that is conducive for pedestrian and bicycle activities providing a linear bike path parallel to US 1, ample sidewalks, and crosswalks.

Appendix A Site Plan



JAMERICAN


RIVIERA PLAZA

PHOLEGINO IA HIS PHANNE HAVE SHITENIA FLOORIPLAN SHEET AS A2

JAMER FONT

RIVIERA PLAZA

ATE 1011/2018 GUEGT NO 14/0/3 RAWING NAME LIVEL FLOOR PLAN

Appendix B Methodology

1750 PONCE DE LEON BOULEVARD, CORAL GABLES, FLORIDA 33134 305 447-0900 • FAX: 305 444-4986 • EMAIL: DPA@DPLUMMER.COM

Riviera Plaza – 1542 South Dixie Highway Traffic Analysis Methodology

May 23, 2016 Revised: May 25, 2016

DPA will undertake a Traffic Impact Analysis as required by the City of Coral Gables. The analyses are for the existing conditions, future conditions with committed development, and the future conditions with project and committed developments.

Location: 1542 South Dixie Highway in Coral Gables, FL.

Existing Site: 55,161 SF Shopping Center

Proposed Plan: 46,279 SF Supermarket and 10,830 SF Specialty Retail

The proposed methodology is outlined below:

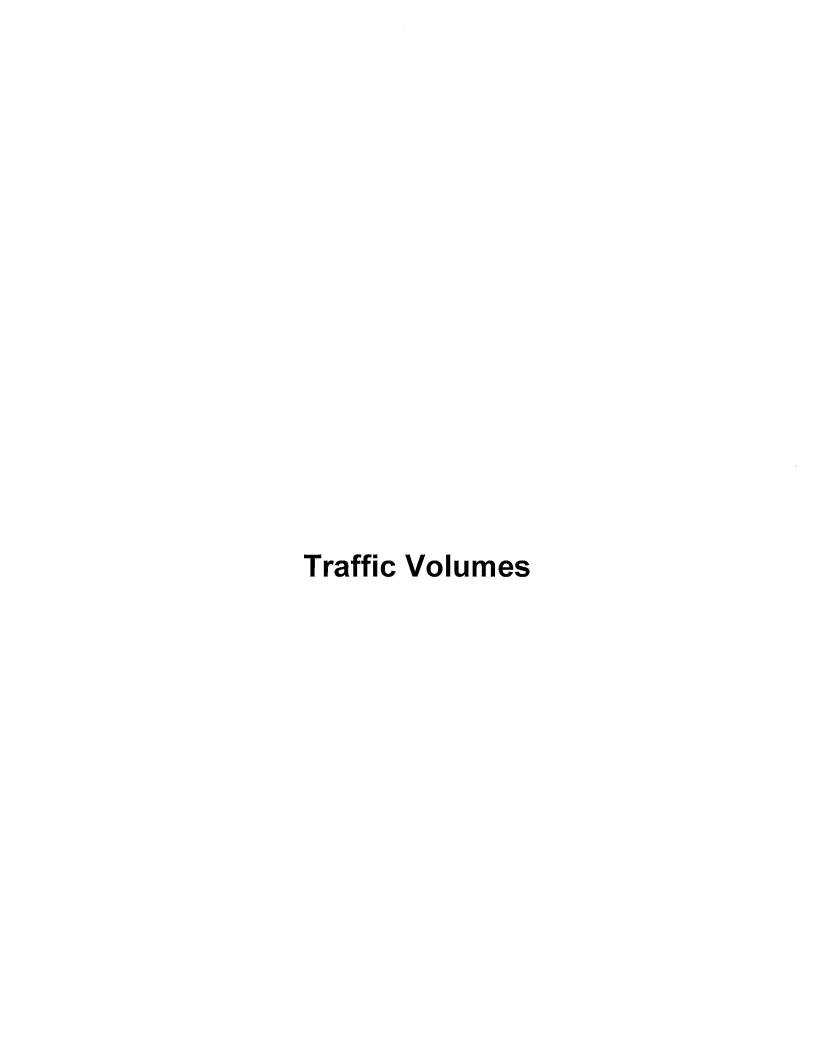
- Traffic Counts (Intersections) Two-hour turning movement counts will be collected for the AM (7-9 AM) and PM (4-6 PM) hours on a typical weekday at the following intersections:
 - 0 US-1 / Yumuri Street (U)
 - US-1 / SW 57th Avenue (S) 0
 - Yumuri Street / Madruga Avenue (U) 0
 - SW 57th Avenue / Madruga Avenue (U) 0
 - Sunset Drive / Yumuri Street (U) 0
 - Sunset Drive / SW 57th Avenue (S) 0

S= Signalized

R= Roundabout

U=Un-signalized

- Signal Location and Timing Existing signal phasing and timing for the signalized intersection will be obtained from Miami-Dade County.
- Trip Generation project trips will be estimated using trip generation information published by the Institute of Transportation Engineers (ITE) Trip Generation Manual, 9th Edition.



- Trip Distribution / Trip Assignment Net new external project traffic will be assigned to the adjacent street network using the appropriate cardinal distribution from the <u>Miami-Dade Long Range Transportation Plan Update</u>, published by the <u>Metropolitan Planning Organization</u>. Normal traffic patterns will also be considered when assigning project trips.
- Background Traffic Available Florida Department of Transportation (FDOT) and Miami-Dade County (MDC) counts will be consulted to determine a growth factor consistent with historical annual growth in the area. The growth factor will be applied to the existing traffic volumes to establish background traffic.
- Future Transportation Projects The 2015 TIP and the 2040 LRTP will be reviewed and considered in the analysis at project build-out.
- Committed Developments Committed developments will be provided by the city.
- Intersection analysis will be done using Highway Capacity Software (HCS) based on the 2010 <u>Highway Capacity Manual</u> (HCM) or the Synchro software. Operation analysis at driveways providing access to/from the site will also be conducted.
- Multimodal Considerations Pedestrian, bicycle and transit facilities will be defined in a Circulation Plan. Existing bus and mass transit routes including schedule and bus stop locations will be discussed as part of the study.

w:\16\16180\methodology_rev.docx

Appendix C Data Collection

Traffic Volumes
Signal Timings
Historic Background Growth
Seasonal Factors

TURNING MOVEMENT COUNTS

Project Name: Location:

Riviera Plaza - 1542 South Dixie Highway
US -1 / Yumuri Street
Trident Engineering

Project Number: Count Date:

Observer:

Day of Week:

6/1/2016 Wednesday

				Yumur	Yumuri Street							US	-1				
TIME		NORTI	HBOUN	D		SOUTHBOUND				EAST	BOUND))	GRAND		
INTERVAL	L	J	R	TOTAL	L	T	R	TOTAL	usa Lema	T	R	TOTAL	L	T	R	TOTAL.	TOTAL
07:00 AM 07:15 AM	1		21	22				0		760	3	763	52	282		334	1,119
07:15 AM 07:30 AM	1		17	18				0.00		741	5	746	42	407		449	1,213
07:30 AM 07:45 AM	1	ASSESSMENT OF	8	9				0		713	2	715	23	414		437	1,161
07:45 AM 08:00 AM	0		10	10				0		701	11	712	23	397	274927270 2441	420	1,142
08:00 AM 08:15 AM	0		19	19				0		703	2	705	28	452	displayed action	480	1,204
08:15 AM 08:30 AM	1		30	31				0		705	7	712	42	481	7555555	523	1,266
08:30 AM 08:45 AM	0		21	21				0		681	14	695	21	463		484	1,200
08:45 AM 09:00 AM	0		23	23	400000000000000000000000000000000000000			0		654	10	664	33	446		479	1.166

AM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

				Yumur	i Street					US	i -1				
TIME		NORTHBOUND SOUTHBOUND						EAST	BOUND)		WEST	IBOUND	1	GRAND
INTERVAL	L	T	R	TOTAL	L T R	L	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL	
08:00 AM 09:00 AM	2	0	75	77	77 0 0 0 0				27	2885	133	1688	0	1821	4,783
PEAK HOUR FACTOR		0.76 #DIV								0.97				0.94	0.95

Note:

2014 FDOT Seasonal Weekly Volume Factor = 1.01

TURNING MOVEMENT COUNTS

Project Name: Location: Observer:

Riviera Plaza - 1542 South Dixie Highway
US -1 / Yumuri Street
Trident Engineering

Project Number: Count Date:

16180 6/1/2016

Day of Week:

Wednesday

				Yumur	i Stree	t						US	-1				
TIME		NORTI	HBOUN	D		SOUTHBOUND				EAST	BOUND)		WES	TBOUND)	GRAND
INTERVAL	L	T	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	TOTAL
04:00 PM 04:15 PM	11		21	32				0		495	8	503	6	613		619	1,154
04:15 PM 04:30 PM	7		27	34			5153186	0		461	16	477	10	381		391	902
04:30 PM 04:45 PM	5		25	30				0		464	6	470	4	678		682	1,182
04:45 PM 05:00 PM	5		32	37				0		484	11	495	11	607		618	1,150
05:00 PM 05:15 PM	15		29	44				0		511	11	522	7	607		614	1,180
05:15 PM 05:30 PM	10		24	34				0		534	12	546	7	554		561	1,141
05:30 PM 05:45 PM	9		23	32				0		548	8	556	6	457		463	1,051
05:45 PM 06:00 PM	3		33	36				0		519	13	532	9	566		575	1,143

PM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

				Yumur	i Street					US	i -1				
TIME		NORTHBOUND SOUTHBOUND					EASTBOUND WESTBOUND							1	GRAND
INTERVAL	L	Т	R	TOTAL	L T R	H Line	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL	
04:30 PM 05:30 PM	33	0	108	141	0 0 0	0 0 0 0		2028	43	2071	30	2254	0	2284	4,496
PEAK HOUR FACTOR				0.82		0.93 0.9						0.91	0.98		

Note:

2014 FDOT Seasonal Weekly Volume Factor = 1.01

TURNING MOVEMENT COUNTS

Project Name: Location:

Riviera Plaza - 1542 South Dixie Highway US -1 / SW 57th Avenue

Project Number: Count Date:

16180

Observer:

Trident Engineering

Day of Week:

6/2/2016 Thursday

			SW 57th	Avenu	ıe				/ 		US	6 -1	***************************************			
TIME	NORT	HBOUN	D		SOUTI	HBOUN	D		EAST	BOUNE)		WES	BOUND)	GRAND
INTERVAL	Т	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	TOTAL
07:00 AM 07:15 AM	96	16	112		144	24	168	41	757	20	818	11	264	14	289	1,387
07:15 AM 07:30 AM	116	27	143		146	17	163	45	728	27	800	18	391	8	417	1,523
07:30 AM 07:45 AM	104	19	123		160	10	170	47	703	31	781	11	403	9	423	1,497
07:45 AM 08:00 AM	122	10	132		161	28	189	48	712	26	786	19	377	13	409	1,516
08:00 AM 08:15 AM	110	14	124		174	25	199	44	701	33	778	19	435	11	465	1,566
08:15 AM 08:30 AM	121	10	131		158	23	181	65	711	29	805	31	446	15	492	1,609
08:30 AM 08:45 AM	123	24	147		176	37	213	54	686	26	766	24	431	19	474	1,600
08:45 AM 09:00 AM	97	21	118		144	25	169	35	659	29	723	24	417	9	450	1,460

AM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

				SW 57th	Avenu	е						US	-1				
TIME		NORT	HBOUN	D		SOUT	HBOUN	D		EAST	BOUND			WEST	BOUND)	GRAND
INTERVAL	L	L T R TOTAL				T	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL
07:45 AM 08:45 AM	0	riceans skirici				638	95	733	191	2857	112	3160	79	1598	49	1727	6,140
PEAK HOUR FACTOR				0.91			0.92				0.97				0.93	0.98	

Note:

2014 FDOT Seasonal Weekly Volume Factor = 1.01

TURNING MOVEMENT COUNTS

Project Name:

Riviera Plaza - 1542 South Dixie Highway

Project Number: Count Date: Location: Observer: US -1 / SW 57th Avenue

Day of Week:

6/2/2016 Thursday

Trident Engineering

nt Engineering

SW 57th Avenue US -1 TIME NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND GRAND TOTAL TOTAL TOTAL TOTAL INTERVAL R Т R R TOTAL. Т R 04:00 PM 04:15 PM 1,517 04:15 PM 04:30 PM 1,323 04:30 PM | 04:45 PM 1,609 1,578 1,539 172 27 04:45 PM 05:00 PM 05:00 PM 05:15 PM 05:15 PM 05:30 PM 1,532 1,464 1,508 13 133 184 62 520 33 615 547 13 05:30 PM 05:45 PM 05:45 PM 06:00 PM

PM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

					SW 57th	Avenu	е	vc					US	-1				<u> </u>
TI	ME		NORT	HBOUN	D		SOUTI	HBOUN	D		EAST	BOUND)		WEST	BOUNE)	GRAND
INTE	RVAL	L	Т	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	L	Т	R	TOTAL	TOTAL
04:30 PM	05:30 PM	VIII (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997)					290	865	177	2017	125	2319	106	2156	53	2315	6,095	
PEAK HOU	JR FACTOR				0.90				0.88				0.92				0.91	0.97

Note: 2014 FDOT Seasonal Weekly Volume Factor = 1.01

TURNING MOVEMENT COUNTS

Project Name: Location: Observer:

Riviera Plaza - 1542 South Dixie Highway Madruga Ave & Yumuri St Trident Engineering

Project Number: Count Date:

Day of Week:

6/2/2016 Thursday

	Γ				Yumur	Stree	t						Madruga	Aven	ue			
TIME	Ì		NORT	HBOUN	D		SOUT	HBOUN	D		EAST	BOUNE)		WES.	IBOUNE)	GRAND
INTERVA	AL Ĭ	L	T	R	TOTAL	L	Т	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	TOTAL
07:00 AM 07:	15 AM	1	2	0	3	2	15	29	46	24	26	1	51	0	26	0	26	126
07:15 AM 07:3	30 AM	0	4	1	5	1	18	15	34	16	23	2	41	1	19	0	20	100
07:30 AM 07:4	45 AM	2	2	0	4	0	14	6	20	16	18	0	34	0	11	0	11	69
07:45 AM 08:0	MA 00	0	1	2	3	1	20	13	34	14	28	0	42	0	12	1	13	92
08:00 AM 08:	15 AM	3	5	0	8	1	17	15	33	15	24	1	40	2	14	1	17	98
08:15 AM 08:3	30 AM	0	4	0	4	0	27	11	38	19	30	4	53	1	11	0	12	107
08:30 AM 08:4	45 AM	2	6	0	8	2	16	15	33	26	24	3	53	1	14	0	15	109
08:45 AM 09:0	MA 00	0	2	0	2	6	24	20	50	30	43	3	76	0	15	0	15	143

AM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Yumur	i Stree	t						Madruga	Aven	ue			
TIME		NORT	HBOUN	D		SOUT	HBOUN	D		EAST	BOUNE)		WEST	BOUNE)	GRAND
INTERVAL	L T R TOTAL L T					R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL	
08:00 AM 09:00 AM	4	13	2	19	7	76	63	145	81	109	7	197	3	62	1	65	426
PEAK HOUR FACTOR		13 2 19 7 76 63 63 63 64 65 65 65 65 65 65 65						0.77				0.73				0.87	0,80

Note:

2014 FDOT Seasonal Weekly Volume Factor = 1.01

TURNING MOVEMENT COUNTS

Project Name: Location: Observer:

Riviera Plaza - 1542 South Dixie Highway Madruga Ave & Yumuri St Trident Engineering

Project Number: Count Date:

16180 6/2/2016

Thursday

Day of Week:

ſ	. 3 / 1			Yumur	i Stree	t						Madruga	Aven	ue			
TIME		NORTI	HBOUN	D		SOUT	HBOUN	D		EAS1	BOUND			WES	rbount)	GRAND
INTERVAL	L	T	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	TOTAL
04:00 PM 04:15 PM	5	17	1	23	2	18	12	32	21	12	9	42	3	16	8	27	124
04:15 PM 04:30 PM	3	14	1	18	6	17	18	41	21	16	7	44	2	23	4	29	132
04:30 PM 04:45 PM	3	22	1	26	3	14	11	28	21	15	2	38	2	21	2	25	117
04:45 PM 05:00 PM	0	13	0	13	3	12	11	26	16	17	4	37	1	13	1	15	91
05:00 PM 05:15 PM	1	18	1	20	6	17	19	42	20	22	4	46	2	27	6	35	143
05:15 PM 05:30 PM	3	19	3	25	19	17	8	44	15	18	7	40	3	19	7	29	138
05:30 PM 05:45 PM	0	14	1	15	8	11	15	34	21	26	9	56	2	30	3	35	140
05:45 PM 06:00 PM	5	9	0	14	6	9	10	25	13	15	5	33	2	18	10	30	102

PM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

				Yumur	i Stree	t		· · · · · · · · · · · · · · · · · · ·				Madruga	Aven	ue			
TIME		NORTHBOUND SOUTHBOUND								EAST	BOUND)		WEST	rbound)	GRAND
INTERVAL	INTERVAL L T R TOTAI				L	Т	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL
05:00 PM 06:00 PM	10	64	4	78	27	58	53	137	75	71	24	170	9	84	21	114	498
PEAK HOUR FACTOR				0.74				0.82				0.78				0.92	0.91

Note:

2014 FDOT Seasonal Weekly Volume Factor = 1.01

TURNING MOVEMENT COUNTS

Project Name: Location:

Riviera Plaza - 1542 South Dixie Highway Madruga Ave & SW 57th Avenue Trident Engineering

Project Number: Count Date: Day of Week:

16180

6/2/2016 Thursday

Observer:

			SW 57th	Aven	ue			I			Madruga	Aven	ue			
TIME	NORT	HBOUN	D		SOUT	HBOUN	D		EAS	IBOUND			WEST	BOUND)	GRAND
INTERVAL	T	R	TOTAL	L	T	R	TOTAL		T.	R	TOTAL	L	Jan Tara	R	TOTAL	TOTAL
07:00 AM 07:15 AM	96	44	140	55	117		172				0	17		17	34	346
07:15 AM 07:30 AM	102	32	134	39	143		182				0	32		26	58	374
07:30 AM 07:45 AM	110	24	134	19	175		194				0	11		6	17	345
07:45 AM 08:00 AM	116	40	156	28	172		200				0 🐘	13	(10000000000000000000000000000000000000	9	22	378
08:00 AM 08:15 AM	98	31	129	30	195		225			200000000000000000000000000000000000000	0	21		16	37	391
08:15 AM 08:30 AM	107	47	154	47	166		213				0	21		15	36	403
08:30 AM 08:45 AM	124	41	165	44	179		223				0	18		13	31	419
08:45 AM 09:00 AM	91	51	142	32	162		194				0	20		20	40	376

AM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

				SW 57th	Aveni	ıe			Madruga Avenue		
TIME		NORTHBOUND SOUTHBOUN						D	EASTBOUND WESTB	OUND	GRAND
INTERVAL	L	Т	R	TOTAL	L	Т	R	TOTAL	L T R TOTAL L T	R TOTAL	TOTAL
07:45 AM 08:45 AM	0	426	157	583	148	661	0	810	0 0 0 0 77 0	62 139	1,531
PEAK HOUR FACTOR				0.92				0.96	#DIV/0I	0.85	0.95

2014 FDOT Seasonal Weekly Volume Factor = 1.01 Note:

TURNING MOVEMENT COUNTS

Project Name: Location:

Riviera Plaza - 1542 South Dixie Highway Madruga Ave & SW 57th Avenue Trident Engineering

Project Number:

16180 6/2/2016

Observer:

Count Date: Day of Week:

Thursday

					SW 57th	Aven	ue						Madruga	Aver	ıue			
TI	ME		NORT	HBOUN	D		SOUT	HBOUN	D		EAS'	LBOUND)		WEST	BOUNE)	GRAND
INTE	RVAL		T	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	L		R	TOTAL.	TOTAL
04:00 PM	04:15 PM		94	15	109	25	154		179				.0	32		20	52	340
04:15 PM	04:30 PM		114	31	145	23	198		221				0	30		25	55	421
04:30 PM	04:45 PM		138	29	167	29	188		217				0	26		28	54	438
04:45 PM	05:00 PM		146	33	179	19	196		215				0	29		25	54	448
05:00 PM	05:15 PM		102	37	139	22	162		184				0	35		26	61	384
05:15 PM	05:30 PM		145	16	161	20	175		195				0	11		18	29	385
05:30 PM	05:45 PM	0.0000	109	26	135	34	156		190				0	27		28	55	380
05:45 PM	06:00 PM		107	13	120	26	158		184				0	23		19	42	346

PM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

				SW 57th	Avent	ue			Madrug	a Aver	ıue			
TIME		NORT	HBOUN	D		SOU	THBOUN	D	EASTBOUND		WESTE	BOUNE)	GRAND
INTERVAL	L	Т	R	TOTAL	L	Т	R	TOTAL	L T R TOTAL	L	T	R	TOTAL	TOTAL
04:15 PM 05:15 PM	0	482	101	583	100	700	0	800	0 0 0 0	108	0	95	203	1,587
PEAK HOUR FACTOR				0.88				0.95	#DIV/0!				0.92	0.94

Note:

2014 FDOT Seasonal Weekly Volume Factor = 1.01

TURNING MOVEMENT COUNTS

Project Name: Location:

Riviera Plaza - 1542 South Dixie Highway Sunset Dr & Yumuri St

Project Number: Count Date:

16180

Observer:

Trident Engineering

Day of Week:

6/2/2016 Thursday

			Yumuri	Stree	et						Sunse	t Drive				
TIME	NORT	HBOUN	D		SOUTI	IBOUN	D		EAS	TBOUND			WES	TBOUND)	GRAND
INTERVAL	ī	R.	TOTAL	L	T.	R	TOTAL	L	T	R	TOTAL	L	Т	R	TOTAL	TOTAL
07:00 AM 07:15 AM			0	6		24	30	17	80		97		44	8	52	179
07:15 AM 07:30 AM			0	7	10.000	27	34	25	115		140		26	1	27	201
07:30 AM 07:45 AM			0	7		28	35	17	115		132		56	5	61	228
07:45 AM 08:00 AM			0	10		21	31	19	139		158		77	3	80	269
08:00 AM 08:15 AM			0	10		21	31	25	112		137		80	5	85	253
08:15 AM 08:30 AM			0	9		30	39	16	96		112		82	7	89	240
08:30 AM 08:45 AM			0	8		27	35	35	103		138		108	6	114	287
08:45 AM 09:00 AM			0	16		30	46	32	98	100000000000000000000000000000000000000	130		94	16	110	286

AM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

		Yumuri	Stree	et						Sunse	t Drive				
TIME	NORTHBOUNI	D		SOUTH	IBOUN	D		EAS	TBOUND	ı		WES	BOUND)	GRAND
INTERVAL	LTR	TOTAL	L	T	R	TOTAL	L	Т	R	TOTAL	L	T	R	TOTAL	TOTAL
08:00 AM 09:00 AM	0 0 0	0	37	0	105	142	94	433	0	527	Ö	286	26	312	981
PEAK HOUR FACTOR		#DIV/0!				0.82				0.94				0.87	0.93

Note: 2014 FDOT Seasonal Weekly Volume Factor = 1.01

TURNING MOVEMENT COUNTS

Project Name:

Riviera Plaza - 1542 South Dixie Highway Sunset Dr & Yumuri St

Project Number: Count Date: 16180

Location: Observer:

Trident Engineering

Day of Week:

6/2/2016 Thursday

				Yumuri	Stree	t						Sunse	t Drive				
TIME		NORT	HBOUN	D		SOUTI	HBOUN	D		EAS	TBOUND		·	WES	rbount	5	GRAND
INTERVAL	L	T	R	TOTAL	L	T	R	TOTAL	L	ŢΤ	R	TOTAL	L	T	R	TOTAL	TOTAL
04:00 PM 04:15 PM				0	38		49	87	37	101		138		91	11	102	327
04:15 PM 04:30 PM				0	42		39	81	40	83		123		63	11	74	278
04:30 PM 04:45 PM				0	33		39	72	41	88		129		82	8	90	291
04:45 PM 05:00 PM				0	33		48	81	22	95		117		91	10	101	299
05:00 PM 05:15 PM				0	48		45	93	31	90		121		96	10	106	320
05:15 PM 05:30 PM				0	56		37	93	23	107		130		62	9	71	294
05:30 PM 05:45 PM				0	49		37	86	25	122		147		78	11	89	322
05:45 PM 06:00 PM		00000000		n	44	550000000000000000000000000000000000000	48	92	29	116		145		103	12	115	352

PM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

		Yumuri	Stree	t						Sunse	t Drive				
TIME	NORTHBOUND			SOUTH	BOUN	D		EAS	TBOUND			WEST	BOUNE)	GRAND
INTERVAL	L T R 1	TOTAL	L	T	R	TOTAL	L	Т	R.	TOTAL	L	Т	R	TOTAL	TOTAL
05:00 PM 06:00 PM	0 0 0	0	173	0	173	346	125	405	Ö	530	0	336	41	378	1,254
PEAK HOUR FACTOR	#	#DIV/01				0.98				0.92				0.83	0.91

Note: 2014 FDOT Seasonal Weekly Volume Factor = 1.01

TURNING MOVEMENT COUNTS

Project Name: Location:

Riviera Plaza - 1542 South Dixie Highway Sunset Dr & SW 57th Ave

Project Number: Count Date: Day of Week:

16180

Observer:

6/1/2016

Trident Engineering

Wednesday

				SW 57th	Aven	16						Sunse	t Drive	1			
TIME		NORT	HBOUN	D		SOUT	HBOUN	D		EAST	BOUND)		WES	IBOUND)	GRAND
INTERVAL	L	T	R	TOTAL	L	T	R	TOTAL	L	Т	R	TOTAL	L	T	R	TOTAL	TOTAL
07:00 AM 07:15 AM	27	103	25	155	12	96	34	142	27	60	11	98	22	31	11	64	459
07:15 AM 07:30 AM	20	90	30	140	20	66	18	104	36	64	10	110	17	22	10	49	403
07:30 AM 07:45 AM	27	112	33	172	22	77	25	124	27	63	5	95	18	42	13	73	464
07:45 AM 08:00 AM	17	123	22	162	34	76	19	129	40	69	6	115	28	43	11	82	488
08:00 AM 08:15 AM	21	94	24	139	22	79	25	126	34	67	12	113	27	38	9	74	452
08:15 AM 08:30 AM	27	150	30	207	34	94	19	147	30	63	11	104	36	61	12	109	567
08:30 AM 08:45 AM	26	131	34	191	31	77	35	143	47	77	10	134	37	74	7	118	586
08:45 AM 09:00 AM	23	122	33	178	24	94	19	137	24	61	5	90	41	80	12	133	538

AM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

				SW 57th	Avenu	16						Sunse	t Drive				L
TIME		NORT	нвоим	D		SOUT	HBOUN	D		EAST	BOUND)		WEST	BOUNE)	GRAND
INTERVAL	NTERVAL L T R TOTA			TOTAL	L	T	R	TOTAL	L	Ţ	R	TOTAL	L	Ţ	R	TOTAL	TOTAL
08:00 AM 09:00 A	95	467	117	679	100	333	98	531	134	265	35	434	114	197	43	355	1,998
PEAK HOUR FACTO	₹							0.94				0.82				0.82	0.91

Note: 2014 FDOT Seasonal Weekly Volume Factor = 1.01

TURNING MOVEMENT COUNTS

Project Name: Location:

Riviera Plaza - 1542 South Dixie Highway Sunset Dr & SW 57th Ave Trident Engineering

Project Number: Count Date:

16180 6/1/2016

Observer:

Day of Week:

Wednesday

				SW 57th	Aven	ue						Sunse	t Drive)			Ì
TIME		NORT	HBOUN	D		SOUT	HBOUN	D	1	EAST	IBOUND)		WES'	TBOUND)	GRAND
INTERVAL	L.	T	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL.	TOTAL
04:00 PM 04:15 PM	24	70	38	132	25	124	54	203	29	45	13	87	43	67	2	112	534
04:15 PM 04:30 PM	27	75	34	136	12	114	54	180	21	61	17	99	49	76	5	130	545
04:30 PM 04:45 PM	16	79	30	125	16	118	56	190	31	41	16	88	52	66	5	123	526
04:45 PM 05:00 PM	16	72	29	117	25	137	62	224	25	61	14	100	41	61	7	109	550
05:00 PM 05:15 PM	24	78	50	152	24	128	41	193	29	55	13	97	44	46	4	94	536
05:15 PM 05:30 PM	18	79	41	138	18	101	49	168	25	63	13	101	47	72	8	127	534
05:30 PM 05:45 PM	13	90	38	141	11	101	56	168	35	68	9	112	53	61	6	120	541
05:45 PM 06:00 PM	19	90	25	134	13	121	42	176	22	78	7	107	43	69	7	119	536

PM PEAK PERIOD TURNING MOVEMENT COUNT SUMMARY ANNUAL AVERAGE DAILY TRAFFIC CONDITIONS

				SW 57th	Avenu	16						Sunse	t Drive				
TIME		NORT	HBOUN	D		SOUT	нвоим	D		EAST	BOUND)		WEST	BOUNE)	GRAND
INTERVAL	L	Т	R	TOTAL	L	T	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL
04:45 PM 05:45 PM		320	144	543	73	477	209	759	110	238	52	399	188	262	22	472	2,173
PEAK HOUR FACTOR				0.90				0.84				0.92				0.89	0.98

Note: 2014 FDOT Seasonal Weekly Volume Factor = 1.01

CLIENT: DP JOB No: 2016-00098 PROJECT: TMC COUNTY: MIAMI-DADE

62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

File Name: 20160602 TMC VD

Site Code: -Count Date: 06/02/2016 Page No: 1 of 4

(Thu.)

Groups Printed: Automobiles & Heavy Vehicles

ĺ		Rec	l Rd.		Τ	Madrug		tea: Autom	obiles & He		i Rd.		I	Madru	ga Ave.		Ī
		South	bound			West	ound			North	bound			East	ound		
Start Time 06:00 AM	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int Total
06:15 AM 06:30 AM 06:45 AM Total																	
07:00 AM 07:15 AM 07:30 AM 07:45 AM Total	1 0 0	55 38 19 28	117 143 175 172 607	0 0 0 0	0 0 0 0	17 32 11 13 73	0 0 0 0	17 26 6 9	0 1 0 2 3	2 0 0 0	94 101 110 114 419	44 32 24 40 140	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	346 374 345 378 1443
08:00 AM 08:15 AM 08:30 AM	1 0 0	29 47 44	195 166 179	0 0 0	0 0	21 21 18	0 0 0	16 15 13	0 0 0	0 0 0	98 107 12 4	31 47 41	0 0	0 0 0	0 0 0	0 0 0	391 403 419
08:45 AM Total	<u>0</u> 1	32 152	162 702	0	0	20 80	0	20 64	0	0	91 420	51 170	0	0	0	0	376 1589
09:00 AM 09:15 AM 09:30 AM 09:45 AM Total 10:00 AM 10:15 AM 10:30 AM Total		****	******	*****	****				** BREAK*	*****	****	****	******	****	*******		1000
10:45 AM Total 11:00 AM 11:15 AM 11:30 AM 11:45 AM Total																	
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total																	
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total		****	******	*****	********	*****	******		* * BREAK * :	******	*****	******	******	*****		****	
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total																	
03:00 PM 03:15 PM 03:30 PM 03:45 PM Total																	
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	0 0 0 1	25 23 29 18	154 198 188 196 736	0 0 0 0	0 0 0 0	32 30 26 29 117	0 0 0 0	20 25 28 25 98	0 0 0 0	0 0 0 0	94 114 138 146 492	15 31 29 33	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	340 421 438 448 1647
05:00 PM 05:15 PM 05:30 PM 05:45 PM	2 0 2 0	20 20 32 26	162 175 156 158 651	0 0 0 0	0 0 0 0	35 11 27 23	0 0 0 0	26 18 28 19	0 0 0 0	0 0 0 0	102 145 109 107 463	37 16 26 13	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	384 385 380 346 1495
06:00 PM 06:15 PM 06:30 PM 06:45 PM Total	*			У 1	v		v	V:	v	v	-100	02	J	v	v	۷ ۱	17 2

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160602 TMC VD

Site Code: -

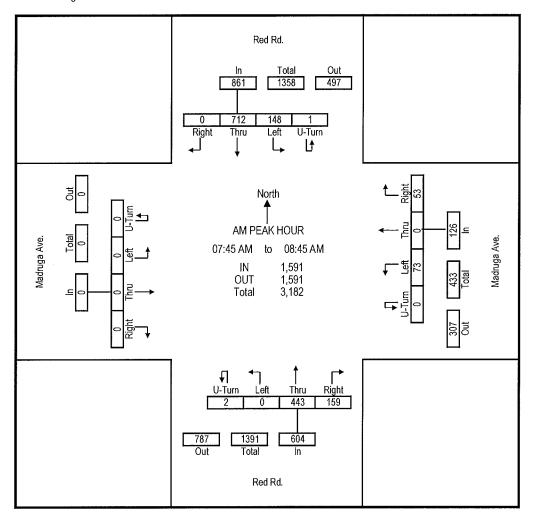
Count Date: 6/2/2016 (Thu.)

Page No: 2 of 4

NW 10 Street

JOB No: 2016-00098

IENT: DP


BRECT: TMC COUNTY: MIAMI-DADE

Groups Printed: Automobiles & Heavy Vehicles

			Rec	l Rd.			Madru	ga Ave.			Red	Rd.			Madru	ga Ave.		
			South	bound			West	bound			North	bound			Eastl	oound		
	Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int Total
-	07:45 AM	0	28	172	0	0	13	0	9	2	0	114	40	0	0	0	0	378
	08:00 AM	1	29	195	0	0	21	0	16	0	0	98	31	0	0	0	0	391
	08:15 AM	0	47	166	0	0	21	0	15	0	0	107	47	0	0	0	0	403
	08:30 AM	0	44	179	0	0	18	0	13	0	0	124	41	0	0	0	0	419
-	Total	1	148	712	0	0	73	0	53	2	0	443	159	0	0	0	0	1591
	PHF	0.250	0.787	0.913	0.000	0.000	0.869	0.000	0.828	0.250	0.000	0.893	0.846	0.000	0.000	0.000	0.000	0.95
	Heavy Veh %	0%	1%	2%	0%	0%	1%	0%	0%	0%	0%	4%	1%	0%	0%	0%	0%	2%
	App Vol %	0%	17%	83%	0%	0%	58%	0%	42%	0%	0%	73%	26%	0%	0%	0%	0%	

Intersection Peak Hour Analysis From 07:00 AM to 9:00 AM

Peak Hour for Entire Intersection Begins at: 07:45 AM to 08:45 AM

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160602 TMC VD

Site Code: -

Count Date: 6/2/2016

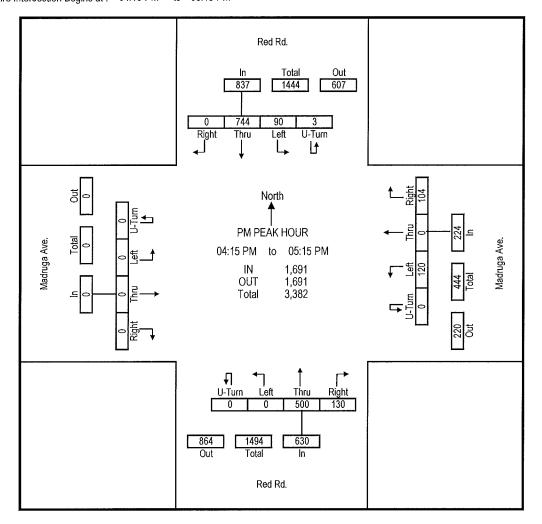
Page No: 3 of 4

(Thu.)

IENT: DP

JOB No: 2016-00098 BRECT: TMC

COUNTY: MIAMI-DADE


NW 10 Street

Groups Printed: Automobiles & Heavy Vehicles

		Rec	l Rd.			Madru	ga Ave.			Rec	Rd.			Madru	ga Ave.	_	
		South	bound			West	bound			North	bound			Eastb	oound		
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int Total
04:15 PM	0	23	198	0	0	30	0	25	0	0	114	31	0	0	0	0	421
04:30 PM	0	29	188	0	0	26	0	28	0	0	138	29	0	0	0	0	438
04:45 PM	1	18	196	0	0	29	0	25	0	0	146	33	0	0	0	0	448
05:00 PM	2	20	162	0	0	35	0	26	0	0	102	37	0	0	0	0	384
Total	3	90	744	0	0	120	0	104	0	0	500	130	0	0	0	0	1691
PHF	0.375	0.776	0.939	0.000	0.000	0.857	0.000	0.929	0.000	0.000	0.856	0.878	0.000	0.000	0.000	0.000	0.94
Heavy Veh %	0%	0%	1%	0%	0%	2%	0%	0%	0%	0%	2%	1%	0%	0%	0%	0%	1%
App Vol %	0%	11%	89%	0%	0%	54%	0%	46%	0%	0%	79%	21%	0%	0%	0%	0%	

Intersection Peak Hour Analysis From 04:00 PM to 06:00 PM

Peak Hour for Entire Intersection Begins at: 04:15 PM to 05:15 PM

CLIENT: DP JOB No: 2016-0098 PROJECT: TMC COUNTY: MIAMI-DADE

62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

File Name: 20160602 TMC VD

Site Code: -Count Date: 6/2/2016 Page No: 4 of 4

(Thu.)

		Groups Printed: Bicy	rclists & Pedestrians		
	Xing - Madruga Ave. (north/south)	Xing - Red Rd.	Xing - Madruga Ave. (north/south)	Xing - Red Rd. (east/west)	7
Start Time	(Hortin/Sodur) Weast Side	(east/west) North Side	East Side	South Side	Int Total
06:00 AM 06:15 AM 06:30 AM 06:45 AM Total					I III TOGAL
07:00 AM 07:15 AM 07:30 AM 07:45 AM Total	1 1 5 3	0 0 0 0	2 1 0 0 3	0 0 0 0	3 2 5 3
08:00 AM 08:15 AM 08:30 AM 08:45 AM	2 2 2 2 5	0 0 0 0 0	0 1 0 3	0 0 0 1 1	2 3 2 9
09:00 AM 09:15 AM 09:30 AM 09:45 AM Total	,	- 1	. ,	,	
10:00 AM 10:15 AM 10:30 AM 10:45 AM Total	***************************************	•••••	* BREAK * * * * * * * * * * * * * * * * * * *		
11:00 AM 11:15 AM 11:30 AM 11:45 AM Total					
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total					
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total	***************************************		BREAK************************************		
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total 03:00 PM					
03:15 PM 03:30 PM 03:45 PM Total					
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	6 7 13 13 39	1 0 0 2 3	6 5 5 4 20	0 1 0 2 3	13 13 18 21 65
05:00 PM 05:15 PM 05:30 PM 05:45 PM Total	5 5 10 5	5 0 0 3 8	5 3 3 5 16	3 0 0 3 6	18 8 13 16
06:00 PM 06:15 PM 06:30 PM 06:45 PM	1				-

CLIENT: DP JOB No: 2016-00098 PROJECT: TMC COUNTY: MIAMI-DADE

62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

File Name: 20160601 TMC VD

Site Code: -Count Date: 06/01/2016 (Wed.)

Page No: 1 of 4

F		Red	I Dd		<u> </u>		oups Printe	ed: Autom	obiles & H		icles 3 Rd.			9E 3	'2 St.		1
		South	bound			West	bound			North	bound			Eastl	oound		
Start Time 06:00 AM	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Tum	Left	Thru	Right	U-Turn	Left	Thru	Right	Int Total
06:15 AM 06:30 AM 06:45 AM Total																	
07:00 AM 07:15 AM 07:30 AM 07:45 AM Total	0 0 0 0	12 20 22 34 88	96 66 77 76 315	34 18 25 19 96	0 0 1 0	22 17 17 28 84	31 22 42 43 138	11 10 13 11 45	0 0 0 0	27 20 27 17 91	103 90 112 123 428	25 30 33 22 110	0 0 0	27 36 27 40 130	60 64 63 69 256	11 10 5 6	459 403 464 488 1814
08:00 AM 08:15 AM 08:30 AM 08:45 AM Total	0 0 1 0	22 34 30 24	79 94 77 94 344	25 19 35 19	0 0 0 0	27 36 37 41	38 61 74 80 253	9 12 7 12 40	0 0 0 0	21 27 26 23	94 150 131 122 497	24 30 34 33	0 0 0 0	34 30 47 24 135	67 63 77 61 268	12 11 10 5	452 567 586 538 2143
09:00 AM 09:15 AM 09:30 AM 09:45 AM Total	,		•••		•	•••	200		. •			72.	·	100	200		2.10
10:00 AM 10:15 AM 10:30 AM 10:45 AM Total		****	*****	******	******	******	******	* *****	**BREAK	******	. * * * * * * *	******	******	******	******	****	
11:00 AM 11:15 AM 11:30 AM 11:45 AM Total																	
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total																	
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total		****	******	*****	******	******			** BREAK '	. * * * * * *	*****	******	*****			****	
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total																	
03:00 PM 03:15 PM 03:30 PM 03:45 PM Total																	
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	0 0 0 1	25 12 16 24	124 114 118 137 493	54 54 56 62 226	0 0 0 0	43 49 52 41 185	67 76 66 61 270	2 5 5 7 19	0 0 0 0	24 27 16 16	70 75 79 72 296	38 34 30 29	0 0 0 0	29 21 31 25	45 61 41 61 208	13 17 16 14 60	534 545 526 550 2155
05:00 PM 05:15 PM 05:30 PM 05:45 PM	0 1 0 1	24 17 11 12	128 101 101 121	41 49 56 42	0 0 0	44 47 53 43	46 72 61 69	4 8 6 7	0 0 0 0	24 18 13 19	78 79 90 90	50 41 38 25	0 0 0	29 25 35 22	55 63 68 78	13 13 9 7	536 534 541 536
Total 06:00 PM 06:15 PM 06:30 PM 06:45 PM Total	2	64	451	188	0	187	248	25	0	74	337	154 [0	111	264	42	2147

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160601 TMC VD

Site Code: -

Count Date: 6/1/2016

(Wed.)

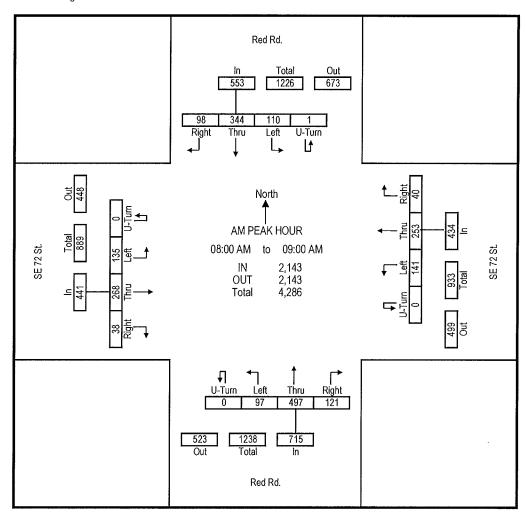
Page No: 2 of 4

NW 10 Street

IENT: DP

BRECT: TMC

JOB No: 2016-00098


COUNTY: MIAMI-DADE

Groups Printed: Automobiles & Heavy Vehicles

		Red	Rd.			SE 7	'2 St.			Rec	l Rd.			SE 7	'2 St.		
		South	bound			West	bound			North	bound			Easth	oound		
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int Total
08:00 AM	0	22	79	25	0	27	38	9	0	21	94	24	0	34	67	12	452
08:15 AM	0	34	94	19	0	36	61	12	0	27	150	30	0	30	63	11	567
08:30 AM	1	30	77	35	0	37	74	7	0	26	131	34	0	47	77	10	586
08:45 AM	0	24	94	19	0	41	80	12	0	23	122	33	0	24	61	5	538
Total	1	110	344	98	0	141	2 53	40	0	97	497	121	0	135	268	38	2143
PHF	0.250	0.809	0.915	0.700	0.000	0.860	0.791	0.833	0.000	0.898	0.828	0.890	0.000	0.718	0.870	0.792	0.91
Heavy Veh %	0%	3%	3%	2%	0%	0%	1%	9%	0%	2%	2%	2%	0%	1%	4%	3%	2%
App Vol %	0%	20%	62%	18%	0%	32%	58%	9%	0%	14%	70%	17%	0%	31%	61%	9%	

Intersection Peak Hour Analysis From 07:00 AM to 9:00 AM

Peak Hour for Entire Intersection Begins at: 08:00 AM to 09:00 AM

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160601 TMC VD

(Wed.)

Site Code: -

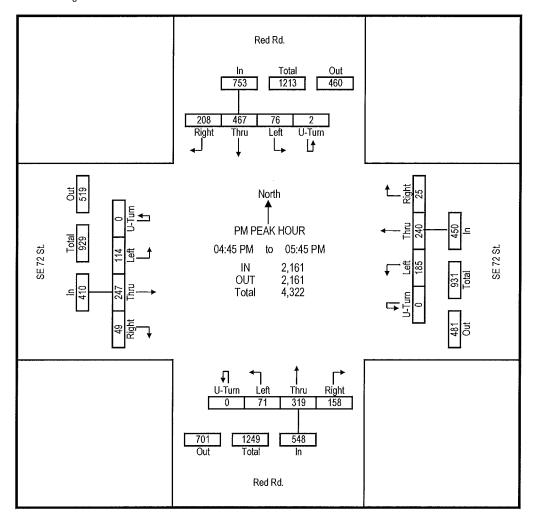
Count Date: 6/1/2016

Page No: 3 of 4

IENT: DP JOB No: 2016-00098

BRECT: TMC

COUNTY: MIAMI-DADE


NW 10 Street

Groups Printed: Automobiles & Heavy Vehicles

		Red	l Rd.			SE 7	'2 St.			Rec	Rd.			SE 7	'2 St.		
		South	bound			West	bound			North	bound	:		Easth	oound		
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int Total
04:45 PM	1	24	137	62	0	41	61	7	0	16	72	29	0	25	61	14	550
05:00 PM	0	24	128	41	0	44	46	4	0	24	78	50	0	29	55	13	5 36
05:15 PM	1	17	101	49	0	47	72	8	0	18	79	41	0	25	63	13	5 34
05:30 PM	0	11	101	56	0	53	61	6	0	13	90	38	0	35	68	9	541
Total	2	76	467	208	0	185	240	25	0	71	319	158	0	114	247	49	2161
PHF	0.500	0.792	0.852	0.839	0.000	0.873	0.833	0.781	0.000	0.740	0.886	0.790	0.000	0.814	0.908	0.875	0.98
Heavy Veh %	0%	0%	1%	0%	0%	1%	3%	0%	0%	0%	2%	1%	0%	0%	1%	2%	1%
App Vol %	0%	10%	62%	28%	0%	41%	53%	6%	0%	13%	58%	29%	0%	28%	60%	12%	

Intersection Peak Hour Analysis From 04:00 PM to 06:00 PM

Peak Hour for Entire Intersection Begins at: 04:45 PM to 05:45 PM

CLIENT: DP JOB No: 2016-0098 PROJECT: TMC COUNTY: MIAMI-DADE 62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

File Name: 20160601 TMC VD

Site Code: Count Date: 6/1/2016
Page No: 4 of 4

(Wed.)

Groups Printed: Bicyclists & Pedestrians

	Xing - SE 72 St. (north/south)	Xing - Red Rd. (east/west)	cyclists & Pedestrians Xing - SE 72 St. (north/south)	Xing - Red Rd. (east/west)]
Start Time	Weast Side	North Side	East Side	South Side	Int Total
06:00 AM 06:15 AM 06:30 AM 06:45 AM Total					
07:00 AM 07:15 AM 07:30 AM 07:45 AM Total	1 4 2 4 11	0 3 0 1 4	1 2 4 2 9	0 0 1 1 2	2 9 7 8 26
08:00 AM 08:15 AM 08:30 AM 08:45 AM	9 1 6 5	0 2 0 0 2	2 4 1 0 7	1 1 1 5 8	12 8 8 10 38
09:00 AM 09:15 AM 09:30 AM 09:45 AM Total					
10:00 AM 10:15 AM 10:30 AM 10:45 AM Total	******************	•••••	** BREAK ************************************	•••••	
11:00 AM 11:15 AM 11:30 AM 11:45 AM Total					
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total					
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total			** BREAK ************************************		
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total					
03:00 PM 03:15 PM 03:30 PM 03:45 PM Total					
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	8 8 1 3 20	4 0 4 0	10 16 21 9 56	6 16 4 0	28 40 30 12 110
05:00 PM 05:15 PM 05:30 PM 05:45 PM Total	9 6 13 6 34	0 1 1 1 3	10 2 14 13 39	4 3 11 8 26	23 12 39 28
06:00 PM 06:15 PM 06:30 PM 06:45 PM Total	1				

CLIENT: DP JOB No: 2016-00098 PROJECT: TMC COUNTY: MIAMI-DADE

62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

File Name: 20160601 TMC VD Site Code: -Count Date: 06/01/2016 (Page No: 1 of 4 (Wed.)

,								ed: Autom	obiles & He								
		Red South				U: West	S 1 bound			Red North					S 1 bound		
Start Time 06:00 AM	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int Total
06:15 AM 06:30 AM 06:45 AM Total																	
07:00 AM 07:15 AM 07:30 AM 07:45 AM	1 0 0 0	0 0 0	143 146 160 161	24 17 10 28	0 1 0 0	11 17 11 19	264 391 403 377	14 8 9 13	0 0 0	0 0 0	96 116 104 122	15 27 19 10	0 1 1 5	41 44 46 43	757 728 703 712	20 27 31 26	1386 1523 1497 1516
Total 08:00 AM	1 0	0 0	610 174	79 25	1 0	58 19	1435 435	44 11	0 0	0 0	438 110	71 14	7 2	174 42	2900 701	104 33	5922 1566
08:15 AM 08:30 AM 08:45 AM	0 0 0	0 0 0	158 176 144 652	23 37 25	0 0 0	31 24 24 98	446 431 417 1729	15 19 9 54	0 0 0	0 0 0	121 123 97 451	10 24 21 69	4 0 2	61 54 33	711 686 659 275 7	29 26 29	1609 1600 1460
Total] 09:00 AM]	0	U	692	110	0	98	1729	54	0	0	451	09	8	190	2151	117	6235
09:15 AM 09:30 AM 09:45 AM Total																	
10:00 AM 10:15 AM 10:30 AM 10:45 AM Total		****	******	******	******	*****	******	* *****	* * BREAK *	*****	*****	* * * * * * *	*******	******	*****	****	
11:00 AM 11:15 AM 11:30 AM 11:45 AM Total																	
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total																	
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total		****	*****	*****	*****	*****	******	* * * * * * *	** BREAK *	*****	******	. * . * . 1	*****	*****	******	* * * *	
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total																	
03:00 PM 03:15 PM 03:30 PM 03:45 PM Total																	
04:00 PM 04:15 PM 04:30 PM 04:45 PM	0 0 0	0 0 0	107 155 157 154	77 91 94 88	0 1 0 0	26 28 40 34	599 355 638 568	9 9 13 16	0 0 0	0 0 0	112 119 143 161	14 27 23 16	0 0 0	30 43 26 33	492 455 454 479	51 40 21 29	1517 1323 1609 1578
Total 05:00 PM	0 0	0 0	573 130	350 42	1 0	128 26	2160 585	47 14	0	0 0	535 132	80 6	0	132 57	1880 520	141 27	6027 1539
05:15 PM 05:30 PM	0	0 0	151 148	68 66	0	20 19	538 439	19 12	0	0	139 126	18 12	0	25 75	529 545	25 22	1532 1464
05:45 PM Total	0	0	136 5 65	48 224	0	16 81	547 2109	13 58	0	0	120 517	13 49	0	62 219	520 21 1 4	33 107	1508 6043
06:00 PM 06:15 PM 06:30 PM 06:45 PM Total																	

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160601 TMC VD

Site Code: -

Count Date: 6/1/2016

16 (Wed.)

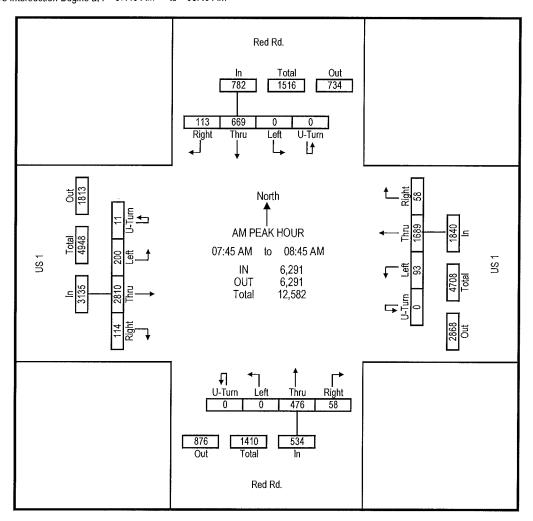
Page No: 2 of 4

COUNTY: MIAMI-DADE

JOB No: 2016-00098

NW 10 Street

IENT: DP


BRECT: TMC

Groups Printed: Automobiles & Heavy Vehicles

		Rec	l Rd.			US	3 1			Red	l Rd.			US	S 1		
		South	bound			West	bound			North	bound			Eastl	oound		
Start Time	U-Turn	Left	Thru	Right	Int Total												
07:45 AM	0	0	161	28	0	19	377	13	0	0	122	10	5	43	712	26	1516
08:00 AM	0	0	174	25	0	19	435	11	0	0	110	14	2	42	701	33	1566
08:15 AM	0	0	158	23	0	31	446	15	0	0	121	10	4	61	711	29	1609
08:30 AM	0	0	176	37	0	24	431	19	0	0	123	24	0	54	686	26	1600
Total	0	0	669	113	0	93	1689	58	0	0	476	58	11	200	2810	114	6291
PHF	0.000	0.000	0.950	0.764	0.000	0.750	0.947	0.763	0.000	0.000	0.967	0.604	0.550	0.820	0.987	0.864	0.98
Heavy Veh %	0%	0%	1%	3%	0%	9%	2%	3%	0%	0%	3%	2%	0%	1%	2%	1%	2%
App Vol %	0%	0%	86%	14%	0%	5%	92%	3%	0%	0%	89%	11%	0%	6%	90%	4%	

Intersection Peak Hour Analysis From 07:00 AM to 9:00 AM

Peak Hour for Entire Intersection Begins at: 07:45 AM to 08:45 AM

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160601 TMC VD

Site Code: -

Count Date: 6/1/2016

(Wed.)

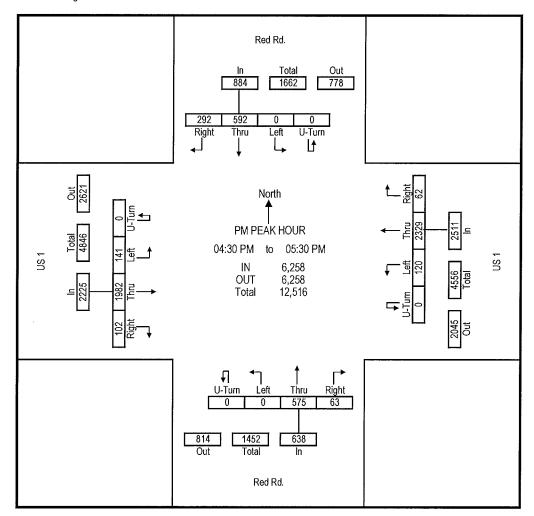
Page No: 3 of 4

COUNTY: MIAMI-DADE

JOB No: 2016-00098

NW 10 Street

IENT: DP


BRECT: TMC

Groups Printed: Automobiles & Heavy Vehicles

		Red	l Rd.			US	3 1			Red	l Rd.			US	3 1		
		South	bound			West	bound			North	bound			East	oound		
Start Time	U-Turn	Left	Thru	Right	Int Total												
04:30 PM	0	0	157	94	0	40	638	13	0	0	143	23	0	26	454	21	1609
04:45 PM	0	0	154	88	0	34	568	16	0	0	161	16	0	33	479	29	1578
05:00 PM	0	0	130	42	0	26	585	14	0	0	132	6	0	57	520	27	1539
05:15 PM	0	0	151	68	0	20	538	19	0	0	139	18	0	25	529	25	1532
Total	0	0	592	292	0	120	2329	62	0	0	575	63	0	141	1982	102	6258
PHF	0.000	0.000	0.943	0.777	0.000	0.750	0.913	0.816	0.000	0.000	0.893	0.685	0.000	0.618	0.937	0.879	0.97
Heavy Veh %	0%	0%	1%	0%	0%	2%	1%	0%	0%	0%	1%	0%	0%	5%	1%	0%	1%
App Vol %	0%	0%	67%	33%	0%	5%	93%	2%	0%	0%	90%	10%	0%	6%	89%	5%	

Intersection Peak Hour Analysis From 04:00 PM to 06:00 PM

Peak Hour for Entire Intersection Begins at: 04:30 PM to 05:30 PM

CLIENT: DP JOB No: 2016-0098 PROJECT: TMC COUNTY: MIAMI-DADE TRIDE NT Engineering 62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

File Name: 20160601 TMC VD

Site Code: Count Date: 6/1/2016
Page No: 4 of 4

(Wed.)

Groups Printed: Bicyclists & Pedestrians

	Xing - US 1 (north/south)	Xing - Red Rd. (east/west)	Xing - US 1 (north/south)	Xing - Red Rd. (east/west)]
Start Time	Weast Side	North Side	East Side	South Side	Int Total
06:00 AM 06:15 AM 06:30 AM 06:45 AM Total					•
07:00 AM 07:15 AM 07:30 AM 07:45 AM Total	1 5 5 1 12	0 0 3 0	0 4 0 2 6	0 1 1 5 7	1 10 9 8 28
08:00 AM 08:15 AM 08:30 AM 08:45 AM Total	0 0 0 0	0 2 1 3 6	2 3 0 0 5	2 4 0 2 8	4 9 1 5
09:00 AM 09:15 AM 09:30 AM 09:45 AM					
10:00 AM 10:15 AM 10:30 AM 10:45 AM Total	***************************************		** BREAK ************************************		
11:00 AM 11:15 AM 11:30 AM 11:45 AM Total					
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total					
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total		•••••	**BREAK************************************		
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total					
03:00 PM 03:15 PM 03:30 PM 03:45 PM Total					
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	3 6 0 3 12	3 5 2 7	3 9 10 3 25	3 8 13 8 32	12 28 25 21 86
05:00 PM 05:15 PM 05:30 PM 05:45 PM	1 1 1 0 1 3	2 1 5 3	4 2 2 2 2 10	7 5 7 1	14 9 14 7
06:00 PM 06:15 PM 06:30 PM 06:45 PM Total	J 1	,,	, 10 1	20	ा चन च

CLIENT: DP JOB No: 2016-00098 PROJECT: TMC COUNTY: MIAMI-DADE

Total

62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265 File Name: 20160601 TMC VD

Site Code: -

Count Date: 06/01/2016 (Wed.)

Page No: 1 of 4

Groups Printed: Automobiles & Heavy Vehicles Yumuri St. US 1 US 1 Southbound Westbound Northbound Eastbound Start Time U-Turn Left Thru Right U-Turn Left Thru Right U-Turn Left Thru Right U-Turn Left Thru Right Int Total 06:00 AM 06:15 AM 06:30 AM 06:45 AM Total 42 07:00 AM 5 2 07:15 AM 07:30 AM Ō Ō Õ Õ ō Õ Õ 07:45 AM Total: 08:00 AM 08:15 AM 08:30 AM 08:45 AM Total 09:00 AM 09:15 AM 09:30 AM 09:45 AM Total 10:00 AM 10:15 AM 10:30 AM 10:45 AM Total 11:00 AM 11:15 AM 11:30 AM 11:45 AM Total 12:00 PM 12:15 PM 12:30 PM 12:45 PM Total 01:00 PM 01:15 PM 01:30 PM 01:45 PM Total 02:00 PM 02:15 PM 02:30 PM 02:45 PM Total 03:00 PM 03:15 PM 03:30 PM 03:45 PM Total 04:00 PM 25 04:15 PM Ō Ö Ō Ó Ō 04:30 PM Ō Ō Ō Õ Õ 04:45 PM Total 05:00 PM 05:15 PM 05:30 PM 05:45 PM Total 06:00 PM 06:15 PM 06:30 PM 06:45 PM

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160601 TMC VD

Site Code: -

Count Date: 6/1/2016 (Wed.)

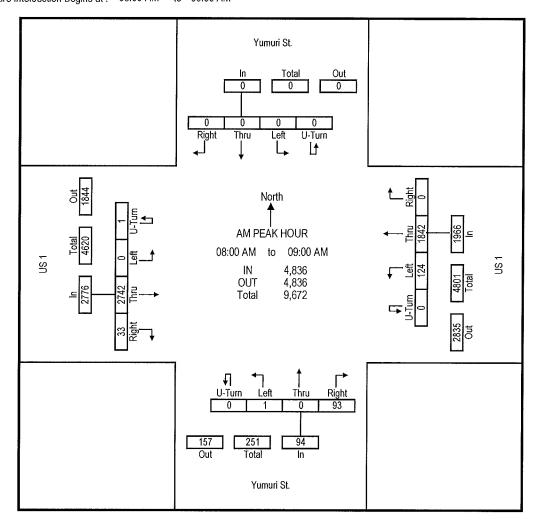
Page No: 2 of 4

COUNTY: MIAMI-DADE

JOB No: 2016-00098

NW 10 Street

IENT: DP


BRECT: TMC

Groups Printed: Automobiles & Heavy Vehicles

		Yum	uri St.			U	S 1			Yumi	uri St.			US	31		!
		South	bound			West	bound			North	bound			Easth	oound		
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int Total
08:00 AM	0	0	0	0	0	28	452	0	0	0	0	19	1	0	702	2	1204
08:15 AM	0	0	0	0	0	42	481	0	0	1	0	30	0	0	705	7	1266
08:30 AM	0	0	0	0	0	21	463	0	0	0	0	21	0	0	681	14	1200
08:45 AM	0	0	0	0	0	33	446	0	0	0	0	23	0	0	654	10	1166
Total	0	0	0	0	0	124	1842	0	0	1	0	93	1	0	2742	33	4836
PHF	0.000	0.000	0.000	0.000	0.000	0.738	0.957	0.000	0.000	0.250	0.000	0.775	0.250	0.000	0.972	0.589	0.95
Heavy Veh %	0%	0%	0%	0%	0%	1%	2%	0%	0%	0%	0%	3%	0%	0%	2%	6%	2%
App Vol %	0%	0%	0%	0%	0%	6%	94%	0%	0%	1%	0%	99%	0%	0%	99%	1%	

Intersection Peak Hour Analysis From 07:00 AM to 9:00 AM

Peak Hour for Entire Intersection Begins at: 08:00 AM to 09:00 AM

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160601 TMC VD

(Wed.)

Site Code: -

Count Date: 6/1/2016

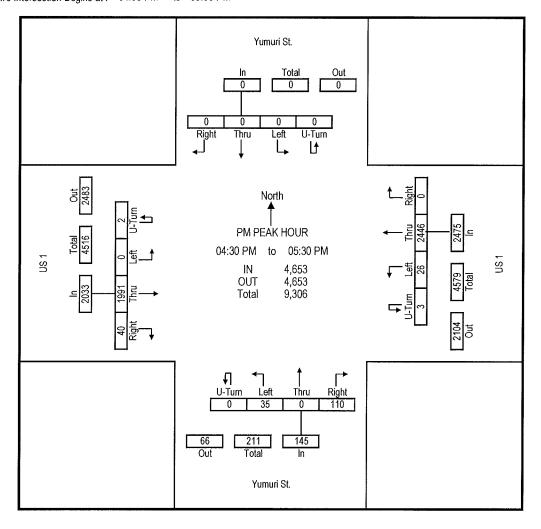
Page No: 3 of 4

NW 10 Street

IENT: DP

BRECT: TMC

JOB No: 2016-00098


COUNTY: MIAMI-DADE

Groups Printed: Automobiles & Heavy Vehicles

			Yum	uri St.			U	S 1			Yum	uri St.			US	3 1		
			South	bound			West	bound			North	bound			Eastt	oound		
Start T	Гіте	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int Total
04:30	PM	0	0	0	0	0	4	678	0	0	5	0	25	0	0	464	6	1182
04:45	PM	0	0	0	0	2	9	607	0	0	5	0	32	2	0	482	11	1150
05:00	PM	0	0	0	0	1	6	607	0	0	15	0	29	0	0	511	11	1180
05:15	PM	0	0	0	0	0	7	554	0	0	10	0	24	0	0	534	12	1141
	Total	0	0	0	0	3	26	2446	0	0	35	0	110	2	0	1991	40	4653
	PHF	0.000	0.000	0.000	0.000	0.375	0.722	0.902	0.000	0.000	0.583	0.000	0.859	0.250	0.000	0.932	0.833	0.98
Heavy	Veh %	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	1%	0%	1%
Арр	Vol %	0%	0%	0%	0%	0%	1%	99%	0%	0%	24%	0%	76%	0%	0%	98%	2%	

Intersection Peak Hour Analysis From 04:00 PM to 06:00 PM

Peak Hour for Entire Intersection Begins at: 04:30 PM to 05:30 PM

CLIENT: DP JOB No: 2016-0098 PROJECT: TMC COUNTY: MIAMI-DADE

TRIDENT Engineering 62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

File Name: 20160601 TMC VD

Site Code: -Count Date: 6/1/2016

Page No: 4 of 4

(Wed.)

		Groups Printed: Bicy	rclists & Pedestrians		
	Xing - US 1 (north/south)	Xing - Yumuri St. (east/west)	Xing - US 1 (north/south)	Xing - Yumuri St. (east/west)	7
Start Time	Weast Side	North Side	East Side	South Side	Int Total
06:00 AM 06:15 AM 06:30 AM 06:45 AM Total	·				······································
07:00 AM 07:15 AM 07:30 AM 07:45 AM Total	0 0 0 0	0 0 0 0	0 0 0 0	1 1 0 1	1 1 0 1
08:00 AM 08:15 AM 08:30 AM 08:45 AM	0 0 0 0	0 0 0 0	0 0 0 0 0	1 2 2 0 5	1 2 2 0
09:00 AM 09:15 AM 09:30 AM 09:45 AM Total	·	·	·		•
10:00 AM 10:15 AM 10:30 AM 10:45 AM Total	***************************************		* BREAK * * * * * * * * * * * * * * * * * * *		
11:00 AM 11:15 AM 11:30 AM 11:45 AM Total					
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total					
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total			BREAK************************************		
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total					
03:00 PM 03:15 PM 03:30 PM 03:45 PM Total					
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	0 1 0 1 2	0 0 0 0	0 0 0 1	3 4 2 1	3 5 2 3
05:00 PM 05:15 PM 05:30 PM 05:45 PM	0 0 0 0 2 2	0 0 0 0	0 0 0 0 0	1 2 0 3 6	1 2 0 5 8
06:00 PM 06:15 PM 06:30 PM 06:45 PM Total	- 1		- 1	·	

CLIENT: DP JOB No: 2016-00098 PROJECT: TMC COUNTY: MIAMI-DADE

62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

File Name: 20160602 TMC VD Site Code: -Count Date: 06/02/2016 Page No: 1 of 4

(Thu.)

Groups Printed: Automobiles & Heavy Vehicles

			uri St.			Madru	ga Ave.	a. Autom	oblies & ne	Yum	uri St.			Madru	ga Ave.		
Start Time	U-Turn	Left	bound Thru	Right	U-Turn	Left	bound Thru	Right	U-Turn	North Left	bound Thru	Right	U-Turn	Left	bound Thru	Right	Int Total
06:00 AM 06:15 AM 06:30 AM 06:45 AM Total				, again								ragin	10 rum 1	2011	1	T. Mark	me roter
07:00 AM 07:15 AM 07:30 AM 07:45 AM Total	0 0 0 0	2 1 0 1	15 18 14 20 67	29 15 6 13	0 0 0 0	0 1 0 0	26 19 11 12 68	0 0 0 1	0 0 0 0	1 0 2 0	2 4 2 1	0 1 0 2	0 0 0 0	24 16 16 14 70	26 23 18 28	1 2 0 0	126 100 69 92 387
08:00 AM 08:15 AM 08:30 AM 08:45 AM Total	0 0 0 0	1 0 2 6	17 27 16 24 84	15 11 15 20 61	0 0 0 0	2 1 1 0	14 11 14 15	1 0 0 0	0 0 0 0	3 0 2 0	5 4 6 2	0 0 0 0	0 0 0 0	15 19 26 30	24 30 24 43	1 4 3 3	98 107 109 143 457
09:00 AM 09:15 AM 09:30 AM 09:45 AM Total	·	·		•	·	•	·	• •	·	v		•	·		121	,, i	401
10:15 AM 10:30 AM 10:45 AM Total 11:00 AM 11:15 AM 11:30 AM		****	*****	*****	*******	*****	******	* * * * * * *	* * BREAK *	*****	*****	*******	******	*****	******	****	
11:45 AM Total 12:00 PM 12:15 PM 12:30 PM 12:45 PM																	
Total 01:00 PM 01:15 PM 01:30 PM 01:45 PM Total		****	*****	*****	*****	*****		* *****	* * BREAK * *	*****	******	*****	*******	****	*******	****	
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total 03:00 PM																	
03:15 PM 03:30 PM 03:45 PM Total	•	0	40	40 1	•	•	40	. 1		_	4-	4 [40		
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	0 0 0 0	2 6 3 3	18 17 14 12 61	12 18 11 11 52	0 0 0 0	3 2 2 1 8	16 23 21 13 73	8 4 2 1 15	0 0 0 0	5 3 3 0	17 14 22 13 66	1 1 0 3	0 0 0 0	21 21 21 16 79	12 16 15 17 60	9 7 2 4 22	124 132 117 91 464
05:00 PM 05:15 PM 05:30 PM 05:45 PM Total	0 0 0 0	6 19 8 6 39	17 17 11 9 54	19 8 15 10 52	0 0 0 0	2 3 2 2 9	27 19 30 18 94	6 7 3 10 26	0 0 0 0	1 3 0 5 9	18 19 14 9	1 3 1 0 5	0 0 0 0	20 15 21 13 69	22 18 26 15 81	4 7 9 5 25	143 138 140 102 523
06:00 PM 06:15 PM 06:30 PM 06:45 PM Total																	

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160602 TMC VD

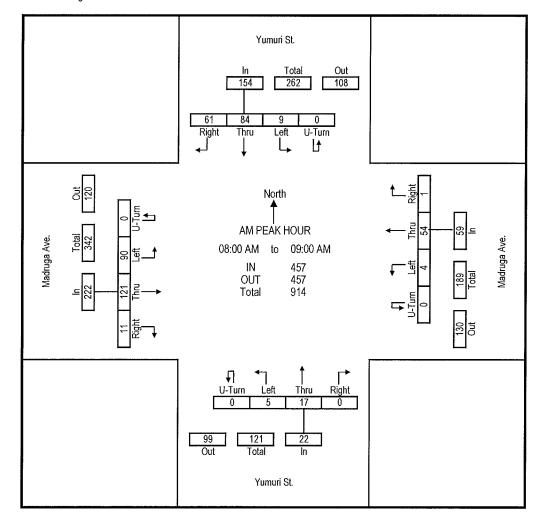
Site Code: -

Count Date: 6/2/2016 Page No: 2 of 4 (Thu.)

BRECT: TMC COUNTY: MIAMI-DADE

JOB No: 2016-00098

NW 10 Street


IENT: DP

Groups Printed: Automobiles & Heavy Vehicles

			Yum	uri St.			Madru	ga Ave.			Yum	uri St.			Madru	ga Ave.		
_			South	bound			West	bound			North	bound			East	oound		
	Start Time	U-Turn	Left	Thru	Right	Int Total												
	08:00 AM	0	1	17	15	0	2	14	1	0	3	5	0	0	15	24	1	98
	08:15 AM	0	0	27	11	0	1	11	0	0	0	4	0	0	19	30	4	107
	08:30 AM	0	2	16	15	0	1	14	0	0	2	6	0	0	26	24	3	109
	08:45 AM	0	6	24	20	0	0	15	0	0	0	2	0	0	30	43	3	143
-	Total	0	9	84	61	0	4	54	1	0	5	17	0	0	90	121	11	457
	PHF	0.000	0.375	0.778	0.763	0.000	0.500	0.900	0.250	0.000	0.417	0.708	0.000	0.000	0.750	0.703	0.688	0.80
	Heavy Veh %	0%	0%	1%	2%	0%	0%	2%	0%	0%	0%	0%	0%	0%	4%	0%	0%	2%
	App Vol %	0%	6%	55%	40%	0%	7%	92%	2%	0%	23%	77%	0%	0%	41%	55%	5%	

Intersection Peak Hour Analysis From 07:00 AM to 9:00 AM

Peak Hour for Entire Intersection Begins at: 08:00 AM to 09:00 AM

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160602 TMC VD

Site Code: -

Count Date: 6/2/2016

(Thu.)

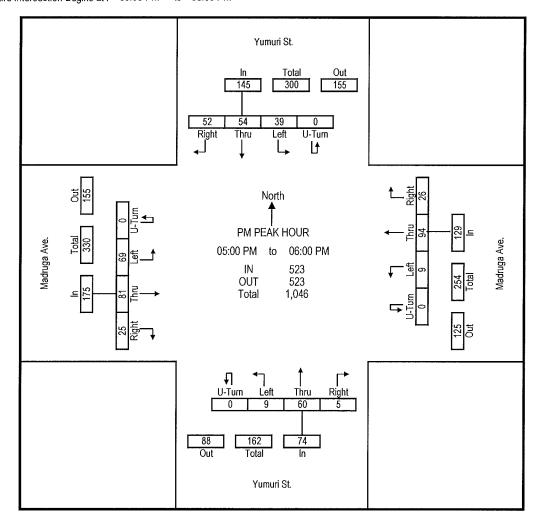
Page No: 3 of 4

COUNTY: MIAMI-DADE

JOB No: 2016-00098

NW 10 Street

IENT: DP


BRECT: TMC

Groups Printed: Automobiles & Heavy Vehicles

			Yum	uri St.			Madru	ga Ave.			Yum	uri St.			Madru	ga Ave.		
			South	bound			West	bound			North	bound			East	oound		
	Start Time	U-Turn	Left	Thru	Right	Int Total												
•	05:00 PM	0	6	17	19	0	2	27	6	0	1	18	1	0	20	22	4	143
	05:15 PM	0	19	17	8	0	3	19	7	0	3	19	3	0	15	18	7	138
	05:30 PM	0	8	11	15	0	2	30	3	0	0	14	1	0	21	26	9	140
	05:45 PM	0	6	9	10	0	2	18	10	0	5	9	0	0	13	15	5	102
-	Total	0	39	54	52	0	9	94	26	0	9	60	5	0	69	81	25	523
	PHF	0.000	0.513	0.794	0.684	0.000	0.750	0.783	0.650	0.000	0.450	0.789	0.417	0.000	0.821	0.779	0.694	0.91
	Heavy Veh %	0%	0%	0%	2%	0%	0%	1%	0%	0%	0%	2%	0%	0%	0%	0%	4%	1%
	App Vol %	0%	27%	37%	36%	0%	7%	73%	20%	0%	12%	81%	7%	0%	39%	46%	14%	

Intersection Peak Hour Analysis From 04:00 PM to 06:00 PM

Peak Hour for Entire Intersection Begins at: 05:00 PM to 06:00 PM

CLIENT: DP JOB No: 2016-0098 PROJECT: TMC COUNTY: MIAMI-DADE

62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

File Name: 20160602 TMC VD

Site Code: Count Date: 6/2/2016
Page No: 4 of 4

(Thu.)

Groups Printed: Bicyclists & Pedestrians

Г	Xing - Madruga Ave.	Groups Printed: Bicy Xing - Yumuri St.	Xing - Madruga Ave.	Xing - Yumuri St.	7
	(north/south)	(east/west)	(north/south)	(east/west)	
Start Time	Weast Side	North Side	East Side	South Side	Int Total
06:00 AM 06:15 AM 06:30 AM 06:45 AM Total					
07:00 AM 07:15 AM 07:30 AM 07:45 AM Total	0 0 0 1	0 1 1 0 2	1 0 0 0	0 0 1 0	1 1 2 1 5
08:00 AM 08:15 AM 08:30 AM 08:45 AM Total	4 0 0 0 4	0 0 0 1	0 0 0 0	0 0 0 1	4 0 0 2 6
09:00 AM 09:15 AM 09:30 AM 09:45 AM Total		'	•	,	, ,
10:00 AM 10:15 AM 10:30 AM 10:45 AM Total	***************************************	*******************	* BREAK * * * * * * * * * * * * * * * * * * *	***************************************	
11:00 AM 11:15 AM 11:30 AM 11:45 AM Total					
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total					
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total	***************************************		* BREAK ************************************	•••••	
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total					
03:00 PM 03:15 PM 03:30 PM 03:45 PM Total					
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	2 0 0 0 2	1 5 2 3 11	1 0 0 0 0	4 2 1 0 7	8 7 3 3
05:00 PM 05:15 PM 05:30 PM 05:45 PM Total	0 0 1 0	2 2 0 3 7	0 0 0 0	4 0 1 0	6 2 2 3 13
06:00 PM 06:15 PM 06:30 PM 06:45 PM Total	· •		ν 1	v	

CLIENT: DP JOB No: 2016-00098 PROJECT: TMC COUNTY: MIAMI-DADE

62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

File Name: 20160602 TMC VD

Site Code: -Count Date: 06/02/2016 (Thu.)

Page No: 1 of 4

r		V	uri St.		1		oups Printe 72 St.	ed: Autom	obiles & He					05.			
		South	bound			West	bound			Yumı North	bound				'2 St. oound		
Start Time 06:00 AM	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	int Total
06:15 AM 06:30 AM 06:45 AM Total																	
07:00 AM 07:15 AM 07:30 AM 07:45 AM	0 0 0 0	6 7 7 10 30	0 0 0 0	24 27 28 21	0 0 0	0 0 0 0	44 26 56 77	8 1 5 3	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	17 25 17 19	80 115 115 139	0 0 0 0	179 201 228 269
Total 08:00 AM	0	30 10	0	100 21	0 0	0	203 80	17 5	0	0	0	0	0 0	7 8 25	449 112	0	877 253
08:15 AM 08:30 AM 08:45 AM Total	0 0 0	9 8 16 43	0 0 0	30 27 30 108	0 0 0	0 0 0	82 108 94 364	7 6 16	0 0 0	0 0 0	0 0 0	0 0 0	0 0	16 35 32	96 103 98	0 0 0	240 287 286
1 otal) 09:00 AM	U	43	U	108	0	U	304	34	0	0	0	0	0	108	40 9	0 [1066
09:15 AM 09:30 AM <u>09:45 AM</u> Total																	
10:00 AM 10:15 AM 10:30 AM 10:45 AM Total		****	******	******	*******	*****	******	* *****	* * BREAK *	******	******	******	******	*****	******	****	
11:00 AM 11:15 AM 11:30 AM 11:45 AM Total																	
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total																	
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total		* * * * *	****	*****	*****	*****	******	* *****	* * DDE AV *	* * * * * * *	*****	*****	******	*****		****	
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total									BREAR								
03:00 PM 03:15 PM 03:30 PM 03:45 PM Total																	
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	0 0 0 0	38 42 33 33 146	0 0 0 0	49 39 39 48 175	0 0 0 0	0 0 0 0	91 63 82 91 327	11 11 8 10 40	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	37 40 41 22 140	101 83 88 95	0 0 0 0	327 278 291 299
05:00 PM	0	48	0	45	0	0	96	10	0	0	0	0	0	31	90	0	320
05:15 PM 05:30 PM 05:45 PM	0 0 0	56 49 44 197	0 0 0	37 37 48	0 0	0 0 0	62 78 103	9 11 12	0 0 0	0 0	0 0 0	0 0	0 0 0	23 25 29	107 122 116	0 0 0	294 322 352
Total 06:00 PM 06:15 PM 06:30 PM 06:45 PM Total	0	19/	U	167	0	0	339	42	0	0	0	0 [0	108	435	0	1288

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160602 TMC VD

Site Code: -

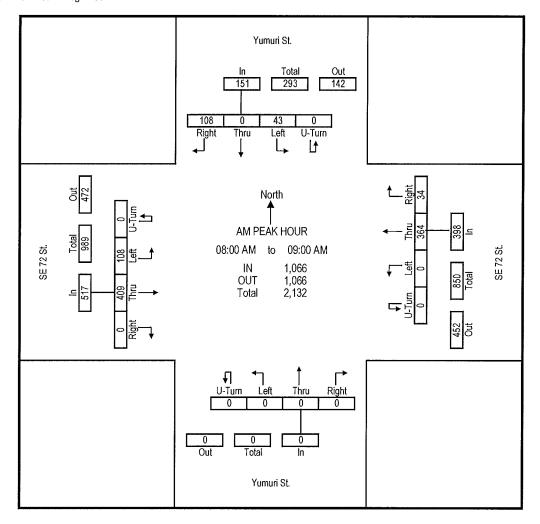
Count Date: 6/2/2016 Page No: 2 of 4 (Thu.)

COUNTY: MIAMI-DADE

JOB No: 2016-00098

NW 10 Street

IENT: DP


BRECT: TMC

Groups Printed: Automobiles & Heavy Vehicles

		Yum	uri St.			SE 7	72 St.			Yum	uri St.			SE 7	'2 St.		
		South	bound			West	bound			North	bound			East	oound		
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	int Total
08:00 AM	0	10	0	21	0	0	80	5	0	0	0	0	0	25	112	0	253
08:15 AM	0	9	0	30	0	0	82	7	0	0	0	0	0	16	96	0	240
08:30 AM	0	8	0	27	0	0	108	6	0	0	0	0	0	35	103	0	287
08:45 AM	0	16	0	30	0	0	94	16	0	0	0	0	0	32	98	0	286
Total	0	43	0	108	0	0	364	34	0	0	0	0	0	108	409	0	1066
PHF	0.000	0.672	0.000	0.900	0.000	0.000	0.843	0.531	0.000	0.000	0.000	0.000	0.000	0.771	0.913	0.000	0.93
Heavy Veh %	0%	0%	0%	4%	0%	0%	3%	0%	0%	0%	0%	0%	0%	3%	4%	0%	3%
App Vol %	0%	28%	0%	72%	0%	0%	91%	9%	0%	0%	0%	0%	0%	21%	79%	0%	

Intersection Peak Hour Analysis From 07:00 AM to 9:00 AM

Peak Hour for Entire Intersection Begins at: 08:00 AM to 09:00 AM

62 Gables Boulevard Fort Lauderdale, FL 33326

Tel.: 954-815-3265

File Name: 20160602 TMC VD

(Thu.)

Site Code: -

Count Date: 6/2/2016

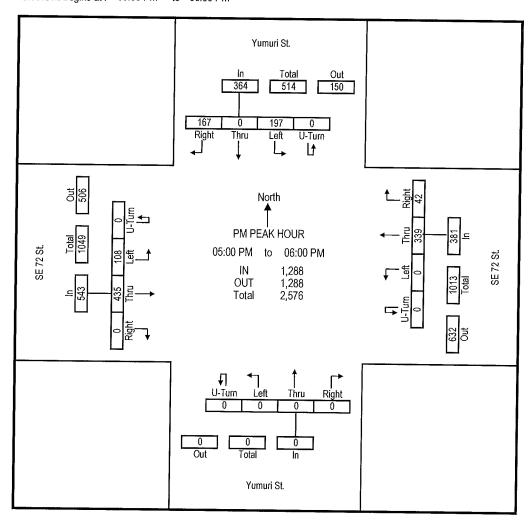
Page No: 3 of 4

NW 10 Street

IENT: DP

BRECT: TMC

JOB No: 2016-00098


COUNTY: MIAMI-DADE

Groups Printed: Automobiles & Heavy Vehicles

		Yum	uri St.			SE	72 St.			Yum	uri St.			SE 7	72 St.	·	1
		South	bound			West	bound			North	bound			Eastl	bound		
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	Int Total
05:00 PM	0	48	0	45	0	0	96	10	0	0	0	0	0	31	90	0	320
05:15 PM	0	56	0	37	0	0	62	9	0	0	0	0	0	23	107	0	294
05:30 PM	0	49	0	37	0	0	78	11	0	0	0	0	0	25	122	0	322
05:45 PM	0	44	0	48	0	0	103	12	0	0	0	0	0	29	116	0	352
Total	0	197	0	167	0	0	339	42	0	0	0	0	0	108	435	0	1288
PHF	0.000	0.879	0.000	0.870	0.000	0.000	0.823	0.875	0.000	0.000	0.000	0.000	0.000	0.871	0.891	0.000	0.91
Heavy Veh %		0%	0%	0%	0%	0%	2%	2%	0%	0%	0%	0%	0%	0%	0%	0%	1%
App Vol %	0%	54%	0%	46%	0%	0%	89%	11%	0%	0%	0%	0%	0%	20%	80%	0%	

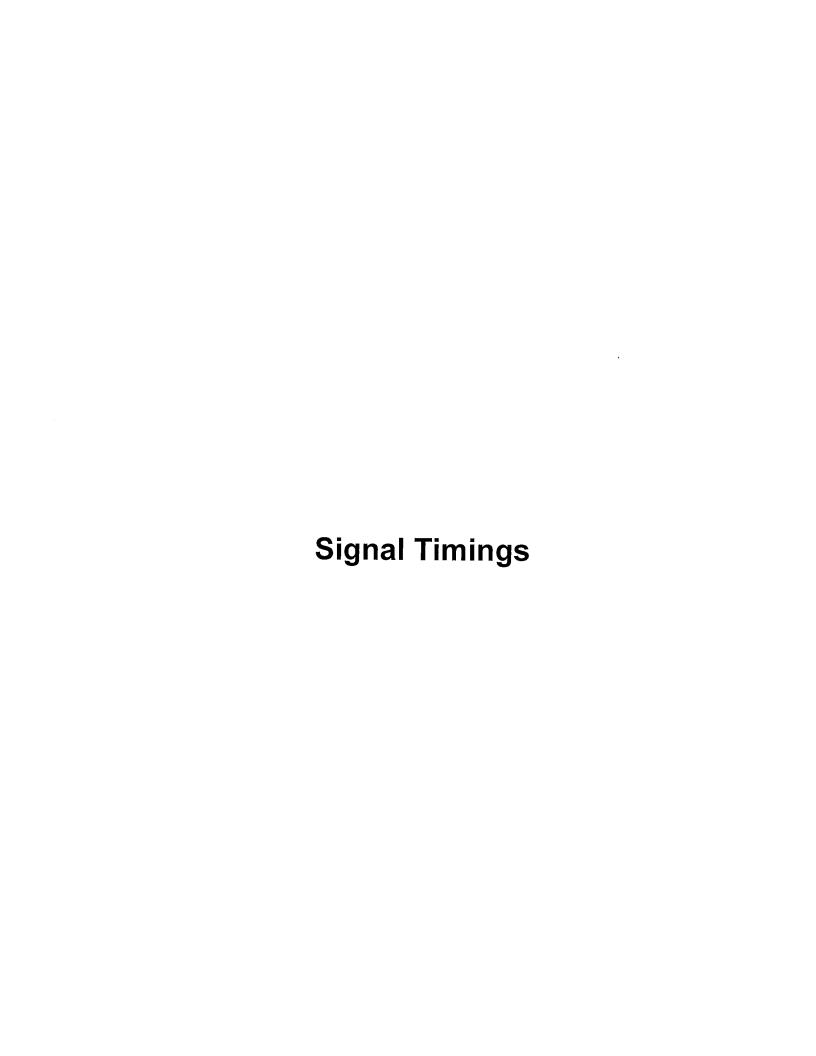
Intersection Peak Hour Analysis From 04:00 PM to 06:00 PM

Peak Hour for Entire Intersection Begins at: 05:00 PM to 06:00 PM

CLIENT: DP JOB No: 2016-0098 PROJECT: TMC COUNTY: MIAMI-DADE 62 Gables Boulevard Fort Lauderdale, FL 33326 TEL: 954-815-3265

Groups Printed: Bicyclists & Pedestrians

File Name: 20160602 TMC VD


Site Code: -

Count Date: 6/2/2016

(Thu.)

Page No: 4 of 4

	Xing - SE 72 St. (north/south)	Xing - Yumuri St. (east/west)	Xing - SE 72 St. (north/south)	Xing - Yumuri St. (east/west)	7
Start Time	Weast Side	North Side	East Side	South Side	Int Total
06:00 AM 06:15 AM 06:30 AM 06:45 AM Total					
07:00 AM 07:15 AM 07:30 AM 07:45 AM Total	0 0 0 0	0 1 0 2 3	0 0 1 2 3	0 0 0 1	0 1 1 5 7
08:00 AM 08:15 AM 08:30 AM 08:45 AM	0 3 0 0	1 1 1 0 3	1 1 2 1 5	1 0 1 1 3	3 5 4 2
09:00 AM 09:15 AM 09:30 AM 09:45 AM Total	- '	· •			•
10:00 AM 10:15 AM 10:30 AM 10:45 AM Total	***************************************		*BREAK************************************	*********************	
11:00 AM 11:15 AM 11:30 AM 11:45 AM Total					
12:00 PM 12:15 PM 12:30 PM 12:45 PM Total					
01:00 PM 01:15 PM 01:30 PM 01:45 PM Total	***************************************		*BREAK******		
02:00 PM 02:15 PM 02:30 PM 02:45 PM Total 03:00 PM					
03:15 PM 03:30 PM 03:45 PM Total					
04:00 PM 04:15 PM 04:30 PM 04:45 PM Total	0 0 0 0	0 0 1 0	1 0 3 2 6	0 0 0 0	1 0 4 2 7
05:00 PM 05:15 PM 05:30 PM 05:45 PM Total	1 1 0 0 2	0 1 0 0	3 3 5 2 13	0 0 0 0	4 5 5 2 16
06:00 PM 06:15 PM 06:30 PM 06:45 PM Total	·				

TOD Schedule Report for 2998: Red Rd&US 1

Print Date: 5/12/2016						for	2998: Red Rd&US 1					Print Time: 2:09 AM
Asset 2998		Intersection Red Rd&US 1			TOD Schedule DOW-5	Op Mode	Plan# N/A	<u>Cycle</u> 0	Offset 0	TOD Setting N/A	Active PhaseBank 0	Active Maximum Max 0
PH.L NEL	PH 2 SWT	PH 3	PH4 NBT	Splits PH 5 SWL		PH 7.	PH 8 SBT					
1	ţ	0	•	Ļ		0	1					

Phase	Walk Phase Bank	Don't Walk	Min Initial	Veh Ext	Max Limit	Max 2	Yellow	Red
	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3		
1 NEL	10 - 0 - 0	0 - 0 - 0	5 - 5 - 5	2 - 2 - 2	7 - 7 - 7	40 - 15 - 15	4.8	2
2 SWT	7 - 7 - 7	19 - 19 - 19	7 - 7 - 7	2.5 -2.5 - 2.5	40 - 40 - 40	0 - 40 - 40	4.8	2
3 -	0 - 0 - 0	0 + 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
4 NBT	5 - 5 - 5	20 - 20 - 20	7 - 7 - 7	2.5 -2.5 - 2.5	15 - 15 - 15	35 - 21 - 21	4	3
5 SWL	0 - 0 - 0	0 - 0 - 0	5 - 5 - 5	2 - 2 - 2	7 - 7 - 7	18 - 12 - 12	4.8	2
6 NET	7 - 7 - 7	19 - 19 - 19	7 - 7 - 7	2.5 -2.5 - 2.5	40 - 40 - 40	0 - 40 - 40	4.8	2
7 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 -0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
8 SBT	5 - 5 - 5	18 - 18 - 18	7 + 7 - 7	2.5 -2.5 - 2.5	15 - 15 - 15	35 - 21 - 21	4	3

TOD Schedule Report for 2998: Red Rd&US 1

Print Date: 5/12/2016

Print Time: 2:09 AM

						Green 1	ime					
Current TOD Schedule	Plan	Cycle	1 NEL	2 SWT	3	NBT	5 SWL	6 NET	7	8 SBT	Ring Offset	Offset
	1	120	10	60	0	29	10	60	0	29	0	74
	2	100	18	36	0	25	12	42	0	25	0	94
	5	130	15	71	0	23	15	71	0	23	0	114
	6	180	8	117	0	34	22	103	0	34	0	38
	7	90	6	34	0	29	6	34	0	29	0	52
	8	190	8	127	0	34	22	113	0	34	0	140
	9	85	13	27	0	24	13	27	0	24	0	70
	10	80	10	35	0	14	8	37	0	14	0	42
	11-	130	14	66	0	29	14	66	0	29	0	124
	12	120	10	70	0	19	10	70	0	19	0	76
	13	85	6	29	0	29	6	29	0	29	0	64
	14	140	10	80	0	29	15	75	0	29	0	94
	15	115	13	62	0	19	13	62	0	19	0	72
	17	180	37	88	0	34	6	119	0	34	0	7
	18	190	37	98	0	34	6	129	0	34	0	7
	19	160	23	87	0	29	16	94	0	29	0	34
	20	160	23	87	0	29	19	91	0	29	0	34
	21	150	18	72	0	39	18	72	0	39	0	127
	22	85	13	27	0	24	13	27	0	24	0	64
	23	180	23	107	0	29	16	114	0	29	0	34
	25	120	3	48	0	48	8	43	0	48	0	78
	26	150	23	83	0	23	23	83	0	23	0	76
	27	130	15	70	0	24	15	70	0	24	0	114
	28	115	13	62	0	19	13	62	0	19	0	72
	29	130	15	70	0	24	1.5	70	0	24	0	114
	30	115	16	56	0	22	16	56	0	22	0	72

		2:0	9 AM
Local TO	Schedule		
Time	Plan	DOW	
0000	22	MTWThF	
0000	13	Su	S
0100	22	Su	S
0130	9	MTWThF	
0200	9	Su	S
0530	10	MTWThF	
0600	17	MTWThF	
0630	7	Su	S
0730	18	MTWThF	
0830	11	Su	S
0930	23	MTWThF	
1100	20	MTWThF	
1400	21	Su	S
1500	6	MTWThF	
1600	8	MTWThF	
1900	19	MTWThF	
2000	2	MTWThF	
2200	7	MTWThF	
2300	13	MTWThF	
2300	13	Su	S

TOD Schedule Report for 2998: Red Rd&US 1

Print Date: 5/12/2016 Print Time: 2:09 AM

Currer	nt Time of Day Function			Local	Time of Day Function			* Settings
0000	Function TOD LOCAL MULTIFU	Settings *	Day of Week SuM T W ThF S	<u>Time</u> 0000	Function TOD LOCAL MULTIFU	Settings *	Day of Week SuM T W ThF S	Blank - FREE - Phase Bank 1, Max 1 Blank - Plan - Phase Bank 1, Max 2
0000 0530	TOD OUTPUTS		M T W ThF	0000	TOD OUTPUTS	******	Su S MTWThF	1 - Phase Bank 2, Max 1
0600	TOD LOCAL MULTIFU		SuM T W ThF S	0100	TOD OUTPUTS	-	Su S	2 - Phase Bank 2, Max 2 3 - Phase Bank 3, Max 1
0630 0855	VEH MAX RECALL VEH MAX RECALL	1	M T W ThF M T W ThF	0530 0600	TOD OUTPUTS TOD LOCAL MULTIFU	 INCT	M T W ThF SuM T W ThF S	4 - Phase Bank 3, Max 2 5 - EXTERNAL PERMIT 1
				0630 0630 0855	TOD OUTPUTS VEH MAX RECALL VEH MAX RECALL	1	Su S M T W ThF M T W ThF	6 - EXTERNAL PERMIT 2 7 - X-PED OMIT 8 - TBA

	No Cale	endar De	fined/E	nabled	

TOD Schedule Report for 3303: Red Rd&Sunset Dr

Print Date: **Print Time:** 5/12/2016 2:11 AM Active Active
PhaseBank Maximum TOD TOD Asset Intersection Schedule Op Mode Plan # Cycle Offset Setting 3303 Red Rd&Sunset Dr DOW-5 N/A 0 0 0 Max 0 N/A Splits PH 1 PH 2 PH 3 PH 4 PH 5 PH 6 PH 7 PH 8 NBL SBT EBL WBT SBL NBT WBL EBT 0 0 0 0 0

ctive Phas		hase Bank 1				13871337	157 (57.17)	
Phase	Walk Phase Bank	Don't Walk	Min Initial	Veh Ext	Max Limit	Max 2	Yellow	Rec
	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3		
NBL	0 - 0 -	0 0 - 0 - 0	5 - 5 - 5	2 - 2 - 2	5 - 5 - 5	12 - 12 - 12	3.7	2.5
2 SBT	7 - 7 -	7 15 - 15 - 15	7 - 7 - 7	1 -1 - 1	21 - 21 - 21	0 - 56 - 56	4	2.5
3 EBL	0 - 0 -	0 - 0 - 0	5 - 5 - 5	2 - 2 - 2	6 - 6 - 6	16 - 16 - 16	3.7	2.4
4 WBT	7 - 7 -	7 16 - 16 - 16	10 - 7 - 7	5 -2.5 - 2.5	23 - 23 - 23	60 - 56 - 56	4	2.4
5 SBL	0 - 0 -	0 0 - 0 - 0	5 - 5 - 5	2 - 2 - 2	5 - 5 - 5	12 - 12 - 12	3.7	2.5
6 NBT	7 - 7 -	7 15 - 15 - 15	7 - 7 - 7	$1 \rightarrow 1 \rightarrow 1$	21 - 21 - 21	0 - 56 - 56	4	2.5
7 WBL	0 - 0 -	0 0 - 0 - 0	5 - 5 - 5	2 - 2 - 2	6 - 6 - 6	16 - 16 - 16	3.7	2.4
8 EBT	7 - 7 -	7 16 - 16 - 16	10 - 7 - 7	5 -2.5 - 2.5	23 - 23 - 23	60 - 56 - 56	4	2.4

TOD Schedule Report for 3303: Red Rd&Sunset Dr

Print Date: 5/12/2016

Print Time: 2:11 AM

					1	Green 7	ime					
Current TOD Schedule	Plan	Cycle	NBL	SBT	3 EBL	4 WBT	5 SBL	6 NBT	7 WBL	8 EBT	Ring Offset	Offset
	1	120	6	43	15	32	6	43	15	32	0	25
	2	100	6	33	10	27	6	33	10	27	0	42
	3	140	6	52	16	42	6	52	16	42	0	25
	4	150	8	64	10	44	8	64	10	44	0	3
	5	130	8	44	10	44	8	44	10	44	0	71
	6	180	15	77	11	53	15	77	11	53	0	24
	7	90	6	27	9	24	6	27	9	24	0	47
	8	190	15	87	11	53	15	87	31	53	0	20
	9	80	6	25	5	20	6	25	5	20	0	46
	10	80	6	25	5	20	6	25	5	20	0	79
	11	130	6	44	10	46	6	44	10	46	0	33
	12	120	6	35	12	43	6	35	12	43	0	72
	13	80	6	25	5	20	6	25	5	20	0	43
	14	140	6	52	16	42	6	52	16	42	0	25
	15	115	6	34	10	41	6	34	10	41	0	37
	16	115	6	34	10	41	6	34	10	41	0	37
	17	180	6	80	12	58	6	80	12	58	0	159
	18	190	6	90	12	58	6	90	12	58	0	78
	19	160	9	69	14	44	9	69	14	44	0	127
	20	160	6	60	12	58	6	60	12	58	0	63
	21	150	8	55	12	51	8	55	12	51	0	9
	22	80	6	25	5	20	6	25	5	20	0	46
	23	180	6	80	12	58	6	80	12	58	0	63
	25	150	6	65	12	43	6	65	12	43	0	26

Local TO	Schedule		
Time	Plan	DOW	
0000	22	MTWThF	
0000	13	Su	S
0100	22	Su	S
0130	9	MTWThF	
0200	9	Su	S
0530	10	MTWThF	
0600	17	MTWThF	
0630	7	Su	S
0730	18	MTWThF	
0830	11	Su	S
0930	23	MTWThF	
1100	20	MTWThF	
1400	21	Su	S
1500	6	MTWThF	
1600	8	MTWThF	
1900	19	MTWThF	
2000	2	MTWThF	
2200	7	MTWThF	
2300	13	MTWThF	
2300	13	Su	S

Curre	nt Time of Day Function			Local	Time of Day Function	7	1
Time	Function	Settings *	Day of Week	Time	Function	Settings *	Day of Week
0000	TOD OUTPUTS	*******	SuM T W ThF S	0000	TOD OUTPUTS	*****	SuM T W ThF S
1100	VEH MAX RECALL	84	M T W THE	1100	VEH MAX RECALL	84	MTWThF
1900	VEH MAX RECALL		MTWThF	1900	VEH MAX RECALL	distriction.	M T W ThE

٠	S	ę	tti	n	g	S

Blank - FREE - Phase Bank 1, Max 1 Blank - Plan - Phase Bank 1, Max 2

- 1 Phase Bank 2, Max 1
- 2 Phase Bank 2, Max 2
- 3 Phase Bank 3, Max 1
- 4 Phase Bank 3, Max 2
- 5 EXTERNAL PERMIT 1 6 EXTERNAL PERMIT 2
- 7 X-PED OMIT
- 8 TBA

TOD Schedule Report for 5129: Sunset Dr&Yumuri St

rint Date: /25/2016						for 51:	29: Sunset i	Dr&Yumuri	St			-		Print Tim 2:47 PI
Asset	,	ntersection	1		TOD chedule	Op Mode	Plan i	£	9	Cycle	Offset	TOD Setting	Active PhaseBank	Active Maximu
5129	Suns	et Dr&Yur	nuri St	DO	W-2			N/A		0	0	N/A	0	Max 0
				Splits										
PH 1	PH 2	PH 3	PH 4	PH 5	PH 6	PH 7	PH 8							
EBL	WBT	-	-		EBT	181	SBL							
0	0	o	0	o	0	o	0							
				9										
4	—						3.3							
							-							
			TT 61 - 2											
tive Phase	e Bank:	Phase B	ank 1											
	Walk	Do	ank 1 n't Walk	Min Initial	Veh	Ext	Max Limit	Max 2	Yellow	Red	Last In	Service Date:	unknown	
	<u>Walk</u> Phase Ba	<u>Do</u> nk	n't Walk					100metry	Yellow	Red	Last In	Service Date:	unknown	
hase .	Walk Phase Ba I 2	<u>Do</u> nk 3 1	2 3	1 2 3	. U. 2	3 1	2 3	1 2 3	P-1100		4000	Service Date:	unknown	
Phase EBL	Walk Phase Ba I 2	0 0	2 3 - 0 - 0	1 2 3	1 2	2 - 2 5	2 3	1 2 3	3	1 0	4000	2007	10000	
Phase EBL WBT	Walk Phase Ba 1 2 0 - 0 - 0 - 0 -	0 0 0 0	2 3 - 0 - 0 - 0 - 0	1 2 3 5 - 5 - 15 - 15 - 1	1 2 5 2 - 5 1 -	2 - 2 5 1 - 1 30	2 3 - 5 - 5 - 30 - 35	1 2 3 10 - 7 - 0 0 - 45 - 0	3	0 1	Pen	mitted Phases	12345678	
EBL WBT	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 -	0 0 0 0 0 0 0	2 3 - 0 - 0 - 0 - 0 - 0 - 0	1 2 3 5 - 5 - 15 - 15 - 1 0 - 0 -	1 2 5 2 - 5 1 - 0 0 -	2 - 2 5 1 - 1 30 0 - 0 0	2 3 - 5 - 5 - 30 - 35 - 0 - 0	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0	3 4 9 0	1 0	Peri	mitted Phases	12345678 1236-8	
EBL WBT	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 0 0 0 0 0 0 0 0 0	2 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	1 2 3 5 - 5 - 15 - 15 - 1 0 - 0 -	1 2 5 2 - 5 1 - 0 0 -	2 - 2 5 1 - 1 30 0 - 0 0 0 - 0 0	2 3 - 5 - 5 - 30 - 35 - 0 - 0 - 0 - 0	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0	3 0 4 0 0	0 1 0	Peri Defa Exte	mitted Phases ault ernal Permit 0	12345678 1236-8 -236-8	
EBL WBT	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	1 2 3 5 - 5 - 15 - 15 - 1 0 - 0 - 0 - 0 -	1 2 5 2 - 6 1 - 0 0 - 0 0 -	2 - 2 5 1 - 1 30 0 - 0 0 0 - 0 0	2 3 - 5 - 5 - 30 - 35 - 0 - 0 - 0 - 0	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0 0 - 0 - 0	3 4 0 0 0 0	1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Peri Defa Exte	mitted Phases ault ernal Permit 0 ernal Permit 1	12345678 1236-8 -236-8 -236-8	
EBL WBT 3 - 1 - 5 - 6 EBT	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	1 2 3 5 - 5 - 15 - 15 - 1 0 - 0 - 0 - 0 - 15 - 15 - 1	1 2 5 2 - 6 1 - 0 0 - 0 0 - 5 1 -	2 - 2 5 1 - 1 30 0 - 0 0 0 - 0 0 0 - 0 0 1 - 1 30	2 3 - 5 - 5 - 30 - 35 - 0 - 0 - 0 - 0 - 0 - 0 - 30 - 35	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0 0 - 0 - 0 0 - 45 - 0	3 3 4 0 0 0 0 0 0	0 0 0 0 1	Peri Defa Exte	mitted Phases ault ernal Permit 0	12345678 1236-8 -236-8	
EBL WBT	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Do nk 3	2 3 - 0	1 2 3 5 - 5 - 15 - 15 - 15 - 1 0 - 0 - 1 15 - 15 -	1 2 5 2 - 5 1 - 0 0 - 0 0 - 5 1 - 0 0 -	2 - 2 5 1 - 1 30 0 - 0 0 0 - 0 0 0 - 0 0 1 - 1 30 0 - 0 0	2 3 - 5 - 5 - 30 - 35 - 0 - 0 - 0 - 0 - 30 - 35 - 0 - 0	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0 0 - 0 - 0 0 - 45 - 0 0 - 0 - 0	3 4 0 0 0 0 0 0 0 4 0 0	0 0 0 0 1 0 0	Peri Defa Exte	mitted Phases ault ernal Permit 0 ernal Permit 1	12345678 1236-8 -236-8 -236-8	
EBL WBT 3 - - - - - - -	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Do nk 3	2 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	1 2 3 5 - 5 - 15 - 15 - 1 0 - 0 - 0 - 0 - 15 - 15 - 1	1 2 5 2 - 5 1 - 0 0 - 0 0 - 5 1 - 0 0 -	2 - 2 5 1 - 1 30 0 - 0 0 0 - 0 0 0 - 0 0 1 - 1 30 0 - 0 0	2 3 - 5 - 5 - 30 - 35 - 0 - 0 - 0 - 0 - 30 - 35 - 0 - 0	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0 0 - 0 - 0 0 - 45 - 0	3 4 0 0 0 0 0 0 0 4 0 0	0 0 0 0 1	Peri Defa Exte	mitted Phases ault ernal Permit 0 ernal Permit 1	12345678 1236-8 -236-8 -236-8	
WBT 3 - 4 - 5 - 5 EBT 7 -	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Do nk 3	2 3 - 0	1 2 3 5 - 5 - 15 - 15 - 15 - 1 0 - 0 - 1 15 - 15 -	1 2 5 2 - 5 1 - 0 0 - 0 0 - 5 1 - 0 0 -	2 - 2 5 1 - 1 30 0 - 0 0 0 - 0 0 0 - 0 0 1 - 1 30 0 - 0 0	2 3 - 5 - 5 - 30 - 35 - 0 - 0 - 0 - 0 - 30 - 35 - 0 - 0	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0 0 - 0 - 0 0 - 45 - 0 0 - 0 - 0	3 4 0 0 0 0 0 0 0 4 0 0	0 0 0 0 1 0 0	Peri Defa Exte Exte	mitted Phases ault ernal Permit 0 ernal Permit 1 ernal Permit 2	12345678 1236-8 -236-8 -236-8	
Phase EBL WBT	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Do nk 3	2 3 - 0	1 2 3 5 - 5 - 15 - 15 - 15 - 1 0 - 0 - 1 15 - 15 -	1 2 5 2 - 5 1 - 0 0 - 0 0 - 5 1 - 0 0 -	2 - 2 5 1 - 1 30 0 - 0 0 0 - 0 0 0 - 0 0 1 - 1 30 0 - 0 0	2 3 - 5 - 5 - 30 - 35 - 0 - 0 - 0 - 0 - 30 - 35 - 0 - 0	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0 0 - 0 - 0 0 - 45 - 0 0 - 0 - 0 25 - 20 - 0	3 4 0 0 0 0 4 0 0 4	0 1 0 0 0 1 0	Peri Defa Exte Exte	mitted Phases ault ernal Permit 0 ernal Permit 1	12345678 1236-8 -236-8 -236-8	
Phase EBL WBT	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Do nk 3	2 3 - 0	1 2 3 5 - 5 - 15 - 15 - 1 0 - 0 - 0 - 0 - 15 - 15 - 1 0 - 0 - 7 - 7 -	1 2 5 2 - 5 1 - 0 0 - 0 0 - 5 1 - 0 0 -	2 3 L 2 - 2 5 1 - 1 30 0 - 0 0 0 - 0 0 0 - 0 0 1 - 1 30 0 - 0 0 2 5 - 2.5 15	2 3 - 5 - 5 - 30 - 35 - 0 - 0 - 0 - 0 - 0 - 0 - 30 - 35 - 0 - 0 - 15 - 18	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0 0 - 0 - 0 0 - 45 - 0 0 - 0 - 0 25 - 20 - 0	3 4 0 0 0 0 4 0 0 4	0 0 0 0 1 0 0	Peri Defa Exte Exte	mitted Phases ault ernal Permit 0 ernal Permit 1 ernal Permit 2	12345678 1236-8 -236-8 -236-8	
Phase EBL WBT	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Do nk 3	2 3 - 0	1 2 3 5 - 5 - 15 - 15 - 1 0 - 0 - 0 - 0 - 15 - 15 - 1 0 - 0 - 7 - 7 -	1 2 5 2 - 5 1 - 0 0 - 0 0 - 5 1 - 0 0 -	2 3 L 2 - 2 5 1 - 1 30 0 - 0 0 0 - 0 0 1 - 1 30 0 - 0 0 0 - 0 0 2 - 0 0 2 - 0 0 5 - 2.5 15	2 3 - 5 - 5 - 30 - 35 - 0 - 0 - 0 - 0 - 0 - 0 - 30 - 35 - 0 - 0 - 15 - 18	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0 0 - 0 - 0 0 - 45 - 0 0 - 0 - 0 25 - 20 - 0	3 4 0 0 0 0 4 0 0 4	0 1 0 0 0 1 0	Periode Period	ault brinal Permit 0 brinal Permit 1 brinal Permit 2 TOD Schedule	12345678 1236-8 -236-8 -236-8 -236-8	Th F S
Phase EBL WBT	Walk Phase Ba 1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Do nk 3	2 3 - 0	1 2 3 5 - 5 - 15 - 15 - 1 0 - 0 - 0 - 0 - 15 - 15 - 1 0 - 0 - 7 - 7 -	1 2 5 2 - 5 1 - 0 0 - 0 0 - 5 1 - 0 0 -	2 3 L 2 - 2 5 1 - 1 30 0 - 0 0 0 - 0 0 1 - 1 30 0 - 0 0 0 - 0 0 2 - 0 0 2 - 0 0 5 - 2.5 15	2 3 - 5 - 5 - 30 - 35 - 0 - 0 - 0 - 0 - 0 - 0 - 30 - 35 - 0 - 0 - 15 - 18	1 2 3 10 - 7 - 0 0 - 45 - 0 0 - 0 - 0 0 - 0 - 0 0 - 45 - 0 0 - 0 - 0 25 - 20 - 0	3 4 0 0 0 0 4 0 0 4	0 1 0 0 0 1 0	Defa Exte Exte Exte Exte Exte	ault ault arnal Permit 0 arnal Permit 1 arnal Permit 2 TOD Schedule Plan	12345678 1236-8 -236-8 -236-8 -236-8	

TOD Schedule Report for 5129: Sunset Dr&Yumuri St

Print Date: 1/25/2016 Print Time: 2:47 PM

Currer	nt Time of Day Function		
Time	Function.	Settings *	Day of Week
0000	TOD OUTPUTS		SuM T W ThF S
0530	TOD OUTPUTS	3	MTWThF
0630	TOD OUTPUTS	2-	MTWThF
0900	TOD OUTPUTS	3	MTWThF
1500	TOD OUTPUTS	2-	MTWThF
1900	TOD OUTPUTS	3	MTWThF
2000	TOD OUTPUTS	1	MTWThF

Time	Function	Settings *	Day of Wee	k
0000	TOD OUTPUTS	363464	SuM T W Th	FS
0530	TOD OUTPUTS	3	MTWTh	F
0600	TOD OUTPUTS	1	Su	S
0630	TOD OUTPUTS	2-	MTWTh	F
0900	TOD OUTPUTS	3	MTWTh	F
1000	TOD OUTPUTS	3	Su	S
1500	TOD OUTPUTS	2-	MTWTh	F
1900	TOD OUTPUTS	3	MTWTh	F
2000	TOD OUTPUTS	1	MTWTh	F
2000	TOD OUTPUTS		Su	S

* Settings
Blank - FREE - Phase Bank 1, Max 1
Blank - Plan - Phase Bank 1, Max 2
1 - Phase Bank 2, Max 1
2 - Phase Bank 2, Max 2
3 - Phase Bank 3, Max 1
4 - Phase Bank 3, Max 2
5 - EXTERNAL PERMIT 1
6 - EXTERNAL PERMIT 2
7 - X-PED OMIT
8 - TBA

No Calendar Defined/Enabled

2014 PEAK SEASON FACTOR CATEGORY REPORT - REPORT TYPE: ALL CATEGORY: 8701 MIAMI-DADE SOUTH

WEEK	DATES	SF	MOCF: 0.99 PSCF
	01/01/2014 - 01/04/2014 01/05/2014 - 01/11/2014 01/12/2014 - 01/18/2014 01/19/2014 - 01/25/2014 01/26/2014 - 02/01/2014 02/02/2014 - 02/08/2014 02/09/2014 - 02/15/2014 02/16/2014 - 02/22/2014 02/23/2014 - 03/08/2014 03/02/2014 - 03/08/2014 03/02/2014 - 03/08/2014 03/09/2014 - 03/08/2014 03/09/2014 - 03/08/2014 03/16/2014 - 03/22/2014 03/30/2014 - 03/22/2014 03/30/2014 - 04/05/2014 04/13/2014 - 04/12/2014 04/13/2014 - 04/19/2014 04/20/2014 - 05/10/2014 04/27/2014 - 05/10/2014 05/11/2014 - 05/17/2014 05/11/2014 - 05/17/2014 05/18/2014 - 05/31/2014 06/08/2014 - 06/07/2014 06/08/2014 - 06/21/2014 06/08/2014 - 06/21/2014 06/15/2014 - 06/21/2014 06/15/2014 - 06/21/2014 06/15/2014 - 06/21/2014 06/22/2014 - 07/05/2014 06/29/2014 - 07/05/2014 07/06/2014 - 07/12/2014 07/13/2014 - 07/12/2014 07/20/2014 - 07/26/2014 07/27/2014 - 08/02/2014 07/27/2014 - 08/02/2014 07/27/2014 - 08/02/2014 08/03/2014 - 08/09/2014 08/10/2014 - 08/16/2014 08/10/2014 - 08/16/2014 08/24/2014 - 08/16/2014 08/24/2014 - 08/16/2014 08/24/2014 - 08/16/2014 08/24/2014 - 09/27/2014 09/21/2014 - 09/13/2014 09/21/2014 - 10/18/2014 10/19/2014 - 10/18/2014 10/19/2014 - 10/18/2014 10/19/2014 - 11/08/2014 11/09/2014 - 11/08/2014 11/09/2014 - 11/08/2014 11/09/2014 - 11/15/2014 11/16/2014 - 11/22/2014 11/16/2014 - 11/22/2014 11/23/2014 - 11/29/2014 11/23/2014 - 12/27/2014 12/21/2014 - 12/27/2014 12/21/2014 - 12/27/2014		0.99 1.02 1.04 1.03 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00

^{*} PEAK SEASON

Appendix D Intersection Capacity Analysis Worksheets

RIVIERA PLAZA - AM PEAK HOUR INTERSECTION ASSIGNMENT

INTERSECTION	MOVEMENT	EXISTING 2016	FUTURE BACKGROUND 0.5% TRAFFIC 2	Shoma Park Tower	Paseo	UHealth	Gables Waterway	Total Committed Developments	FUTURE W/O PROJECT	Existing Project Trips	Pass by	Proposed Project Trips	Pass by	FUTURE WITH PROJECT
	NBL	2	2	0	0	0	0	0	2	0		0		2
	NBT	0	0	0	0	0	0	0	0	0		0		0
	NBR	75	76	1	2	0	0	4	79	3	13	9	18	91
4 no. 4 10.	SBL	0	0	0	0	0	0	0	0	0	2011	0		0
1 US -1 / Yumuri	SBT	0	0	0	0	0	0	0	0	0		0		0
Street	SBR	0	.0	0	0	0	0	0	0	0		0		0
(U)	EBL	0	0	0	0	0	0	0	0	0		.0		0
	EBT	2857	2886	1	13	27	1	41	2927	1		0	-30	2896
	EBR	27	27	0	0	0	0	0	27	0		16	100,0	43
	WBL	133	134	0	3	Ô	1	4	138	4	5	10	8	147
2012/01/20	WBT	1688	1705	0	24	24	3	51	1756	2	-5	10	-3	1765
PHF=0.95	WBR	0	0	0	0	0	0	0	0	0	200	0		0
TOTAL		4782	4830	2	42	51	5	100	4930	10		44		4944
	NBL	0	0	0	0	0	0	0	0	0		0		0
	NBT	449	454	2	0	45	0	47	500	3		10		507
	NBR	71	72	1	2	0	0	3	75	0		0		75
A STANSACTOR STANS	SBL	0	0	0	0	0	0	0	0	0		0		0
2 US -1 / SW 57th	SBT	638	644	0	0	0	0	o l	644	7		16		653
Avenue	SBR	95	96	ō	0	7	ő	7	103	o		0		103
(S)	EBL	191	193	o o	0	45	ő	45	238	o		o		238
	EBT	2857	2886	0	12	27	ő	39	2925	7		16		2934
	EBR	112	113	0	0	0	0	0	113	ó		0		113
	WBL	79	80	0	3	12	1	16	95	0		ő		95
	WBT	1598	1614	o	18	12	2	32	1646	2		10		1654
PHF=0.98	WBR	49	49	0	3	o	o	3	52	ō		0		52
TOTAL		6139	6201	2	38	148	4	192	6392	19		52		6424
TOTAL	NBL	4	4	0	0	0	0	0	4	0		6	_	10
	NBT	13	13	1	4	0	0	2	15	7		2		9
	NBR	2	2	ò	0	ő	0	0	3	ó		ō		3
	SBL	7	7	0	0	ő	ő	0	7		5	0	В	9
3 Yumuri Street /	SBT	76	77	o	3	0	ő	3	80	4	9	1	D	80
Madruga Avenue	SBR	63	64	0	0	0	3	1	65	100		23		87
(u)	EBL	81	82	0	0	0	o	ó	82	15		11	18	96
1000	EBT	109	110	0	0	0	0	0	110	0		13	15	138
			7	7	(42)	100	1.00		1,0,00	1.5			15	
	EBR	7	C C	0	0	0	0	0	7	1		6		12
	WBL	3	3	0	0	0		0	3	0		0		3
PHF=0.80	WBT	62	63	0	0	0	0	0	63	0		14		77
A Marine Telephone	WBR	1	1	0	1	0	0	1	2	0		0		2
TOTAL		428	432	2	- 5	0	_1_	8	441	27	113000-4	79	J	528

RIVIERA PLAZA - AM PEAK HOUR INTERSECTION ASSIGNMENT

INTERSECTION	MOVEMENT	EXISTING 2016	FUTURE BACKGROUND 0,5% TRAFFIC 2	Shoma Park Tower	Paseo	UHealth	Gables Waterway	Total Committed Developments	FUTURE W/O PROJECT	Existing Project Trips	Pass by	Proposed Project Trips	Pass by	FUTURE WITH PROJECT
	NBL	0	0	0	0	0	0	0	0	0		0		0
	NBT	426	430	0	2	45	0	47	477	0		0		477
	NBR	157	159	0	0	0	0	0	159	6		12		165
4 SW 57th Avenue /	SBL	148	149	0	0	0	0	0	149	7		16		158
Madruga Avenue	SBT	661	668	0	3	12	0	15	683	0		0		683
(U)	SBR	0	0	0	0	0	0	0	0	0		0		0
(4)	EBL	0	0	0	0	0	0	0	0	0		0		0
	EBT	0	0	0	0	0	0	0	0	0		Ò		0
	EBR	0	0	0	0	0	0	0	0	0		0		0
	WBL	77	78	5	0	0	0	5	82	3		10		90
PHF=0.95	WBT	0	0	0	0	0	0	0	0	0		0		0
FHF=0,35	WBR	62	63	2	0	0	0	2	65	3		7		70
TOTAL		1531	1546	7	5	57	0	69	1616	18	-	45		1643
	NBL	0	0	0	0	0	0	0	0	0		0		0
	NBT	0	0	0	0	0	0	0	0	0		0		0
	NBR	0	0	0	0	0	0	0	0	0		0		0
r Comment Balling I	SBL	37	37	1	0	0	0	1	38	2		6		43
5 Sunset Drive /	SBT	0	0	0	0	0	0	o o	0	0		0		0
Yumuri Street	SBR	105	106	1	3	0	1	5	111	1		1		112
(U)	EBL	94	95	0	1	1	0	2	97	0		2		99
	EBT	433	437	0	0	0	0	0	437	2		O		435
	EBR	0	0	0	0	0	0	0	0	0		0		0
	WBL	0	0	0	0	0	0	0	0	0		o		ő
SW210CS	WBT	286	289	0	0	4	o	4	293	0		ő		293
PHF=0.93	WBR	26	26	0	0	0	0	o	26	5		10		31
TOTAL		981	991	3	3	5	1	11	1002	9		19	_	1012
	NBL	95	96	0	0	0	0	0	96	0		0	_	96
	NBT	467	472	0	2	28	o l	30	502	2		4		504
	NBR	117	118	0	a	0	ő	0	118	ō		o		118
6 Sunset Drive / SW	SBL	100	101	0	0	1	o l	1	102	0		0		102
57th Avenue	SBT	333	336	1	3	8	ő	12	348	1		5		352
(S)	SBR	98	99	4	0	2	o	6	105	2		2		105
120	EBL	134	135	0	0	8	0	8	143	4		8		148
	EBT	265	268	ő	0	0	o l	0	268	3		4		269
	EBR	35	35	o	0	0	ő	0	35	0		0		35
	WBL	114	115	0	0	ő	0	0	116	0		0		116
	WBT	197	199	1	0	ő	0	1	200	0				
PHF=0.91	WBR	43	43	o	0	4	0	4	47	0		0		200
TOTAL	VVOIS	1998	2018	6	5	51	0	62	2080	11	_	23		47
TOTAL		1990	2010	· ·	9	01	- 0	02	2000	- 11				2093

RIVIERA PLAZA - PM PEAK HOUR INTERSECTION ASSIGNMENT

INTERSECTION	MOVEMENT	EXISTING 2016	FUTURE BACKGROUND 0.5% TRAFFIC 2	Shoma Park Tower	Paseo	UHealth	Gables Waterway	Total Committed Developments	FUTURE W/O PROJECT	Existing Project Trips	Pass by	Proposed Project Trips	Pass by	FUTURE WITH PROJECT
	NBL	33	33	0	0	0	0	0	33	0		0		33
	NBT	0	0	0	0	0	0	0	0	0		0		0
	NBR	108	109	0	4	0	1	6	115	24	20	33	68	172
1 US -1 / Yumuri	SBL	0	0	0	0	0	0	0	0	0	11,222	0		α
Street	SBT	0	0	0	0	0	0	0	0	0		0		0
(U)	SBR	0	0	0	0	0	0	0	0	0		0		0
(4)	EBL	0	0	0	0	0	0	0	0	0		0		0
	EBT	2028	2048	0	24	11	3	38	2086	12		0	-69	2005
	EBR	43	43	0	0	0	o	0	43	0		37		80
	WBL	30	30	1	3	1	1	5	35	11	16	22	18	49
mile a ne	WBT	2254	2277	0	24	98	9	124	2401	18	17	37	-1	2419
PHF=0.98	WBR	0	0	0	0	0	Ö	0	0	0		0	1	0
TOTAL		4496	4541	2	55	110	6	173	4714	65		130		4759
2010000	NBL	0	Ö	0	0	0	0	0	0	0		0		0
	NBT	531	536	10	0	19	0	20	556	24		37		569
	NBR	65	66	0	4	0	0	4	70	0		0		70
With Whiteless	SBL	D	0	D	0	0	0	0	0	ō		0		0
2 US -1 / SW 57th	SBT	575	581	1	0	Ö	ő	1	582	21		37		597
Avenue	SBR	290	293	0	ő	30	ŏ	30	323	0		0		323
(S)	EBL	177	179	ő	0	19	ŏ	19	198	ő		0		198
	EBT	2017	2037	0	22	11	2	35	2072	21		37		2088
	EBR	125	126	1	0	o	1	2	128	0		0		128
	WBL	106	107	o	3	49	ó	53	160	0		0		160
	WBT	2156	2178	0	18	49	1	68	2246	18		37		2265
PHF=0.97	WBR	53	54	0	3	0	o	3	57	0		0		57
TOTAL		6095	6156	3	50	177	4	234	6390	84	-	148		6454
TOTAL	NBL	10	10	0	0	0	0	0	10	0	_	15		25
	NBT	64	65	o	2	0	0	2	67	21		4	7.0	49
	NBR	4	4	ő	a	ő	ō	ō	4	0		0		49
	SBL	27	27	0	0	0	ő	0	27		40	7		
3 Yumuri Street /	SBT	58	59	4	3	3	ő	5		12	16	2		1
Madruga Avenue	SBR		54	0	0	0	0	5	63	12		6	32	57
(U)	EBL	53 75	76	177		17.71	2	2	54	6		53	18	119
200	100,000		70	0	0	0	1	1	77	55		37	68	127
	EBT	71		0	0	0	0	0	72	0		50	17	139
	EBR	24	24	0	0	0	0	0	24	12		24	L MAL	36
	WBL	9	9	0	0	0	0	0	9	0		0		9
PHF=0.91	WBT	84	85	0	0	0	0	0	85	0		33		118
TOTAL	WBR	21	21	0	2	0	0	2	24	0		0		24
TOTAL		500	505	_1_	7	1	2	- 11	516	118		224		709

RIVIERA PLAZA - PM PEAK HOUR INTERSECTION ASSIGNMENT

4 SW 57th Avenue / Madruga Avenue (U) PHF=0.94	NBL NBR SBL SBT SBR EBL EBR WBL WBT WBR	0 482 101 100 700 0 0 0 0	0 487 102 101 707 0 0 0	0 1 2 0 0	0 4 0 0 3 0	0 19 0 0 49	0 0 0 0	0 23 1 2 52	0 510 103 103	0 0 16 21	0 0 28 37	0 510 115
Madruga Avenue (U) PHF=0.94	NBR SBL SBT SBR EBL EBT EBR WBL WBT WBR	101 100 700 0 0 0 0	102 101 707 0 0 0	1 2 0 0 0	0 0 3 0	0 0 49 0	0 0 0	1 2	103 103	16	28	115
Madruga Avenue (U) PHF=0.94	SBL SBT SBR EBL EBT EBR WBL WBT WBR	100 700 0 0 0 0 0	101 707 0 0 0 0	0 0 0	0 3 0	0 49 0	0	2	103	3-		
Madruga Avenue (U) PHF=0.94	SBT SBR EBL EBT EBR WBL WBT WBR	700 0 0 0 0 108	707 0 0 0 0	0 0 0	3 0 0	49 0	0			21	97	
Madruga Avenue (U) PHF=0.94	SBR EBL EBT EBR WBL WBT WBR	0 0 0 108	0 0 0 0	0	0	0		52			3/	119
(U) PHF=0.94 TOTAL	EBL EBT EBR WBL WBT WBR	0 0 108 0	0 0 0	0	0			W.C.	759	0	0	759
PHF=0.94 TOTAL	EBT EBR WBL WBT WBR	0 0 108 0	0	0	11/2/2		0	0	0	0	0	0
TOTAL	EBR WBL WBT WBR	0 108 0	0	275	- 2	0	0	0	0	0	0	0
TOTAL	WBL WBT WBR	108		n.	0	0	.0	0	0	0	0	0
TOTAL	WBT WBR	0	109		0	0	0	0	0	0	0	0
TOTAL	WBR		100	2	0	0	0	2	111	24	37	124
TOTAL		65	0	0	0	0	0	0	0	0	0	0
Ja ta T	NBI	95	96	1	0	0	0	1	97	24	28	101
Ju to T	NRI I	1586	1602	6	7	68	0	81	1683	85	130	1727
CONTRACTOR OF THE SECOND	LADE	0	0	0	0	0	0	0	0	0	0	0
Common No.	NBT	0	0	0	0	0	0	0	0	0	0	0
LOOK CONTRACTOR	NBR	0	0	0	0	0	0	0	0	0	0	0
	SBL	173	175	0	0	0	0	0	175	16	22	182
5 Sunset Drive / Yumuri Street	SBT	0	0	0	0	0	0	0	0	0	0	0
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	SBR	173	175	0	3	0	0	3	178	6	6	178
(U)	EBL	125	126	1	1	4	1	7	133	0	6	138
	EBT	405	409	0	0	0	0	0	409	5	0	404
	EBR	0	0	0	0	0	0	0	0	0	0	0
	WBL	0	o o	0	0	0	0	0	o l	0	0	0
DM2+100	WBT	336	339	0	0	2	o l	2	341	0	0	341
PHF=0.91	WBR	41	41	1	0	0	o l	i	42	14	22	50
TOTAL		1253	1266	2	4	6	1	13	1278	41	56	1293
	NBL	79	80	0	0	0	0	0	80	0	0	 80
	NBT	320	323	1	4	12	o	16	339	5	9	343
	NBR	144	145	0	0	0	0	0	146	0	0	146
Control of the Control	SBL	73	74	ő	0	4	ŏ	4	78	0	Ó	78
6 Sunset Drive / SW	SBT	477	482	0	3	31	ŏ	34	516	6	19	528
67th Avenue	SBR	209	211	1	0	9	o l	10	221	18	9	212
(S)	EBL	110	111	4	0	3	ő	4	115	11	18	123
	EBT	238	240	ó	0	ő	0	ő	241	11	11	241
	EBR	52	53	ő	0	0	ő	ő	53	0	0	53
	WBL	188	190	ő	0	0	0	o	190	0	0	190
Latin Library	WBT	262	265	0	0	0	0	0	265	0	0	265
PHF=0.98	WBR	22	22	ő	0	2	0	2	24	0	0	 265
TOTAL	AADIA	2174	2196	4	6	61	0	72	24	U		- 64

Existing Conditions

Intersection	A								-
Int Delay, s/veh 44	.8								
Movement	NWL	NWR		NET	NER	SWL	SWT		9
Lane Configurations	Υγ			^^		14	444		
Traffic Vol, veh/h	2	75		2857	27	133	1688		
Future Vol, veh/h	2	75		2857	27	133	1688		
Conflicting Peds, #/hr	0	0		0	4	4	0		
Sign Control	Stop	Stop		Free	Free	Free	Free		
RT Channelized	-	None			None	1100	None		
Storage Length	0	-		-	-	80	-		
Veh in Median Storage, #	0			0			0		
Grade, %	0	-		0			0		
Peak Hour Factor	95	95		95	95	95	95		
Heavy Vehicles, %	2	2		2	2	2	2		
Mymt Flow	2	79		3007	28	140	1777		
WWITH THOW	2	13		3007	20	140	1111		
Madaul Monad	N. C.					111.0			
Major/Minor	Minor1	1860		Major1		Major2	200	W YOU W	77.3
Conflicting Flow All	4017	1522		0	0	3040	0		
Stage 1	3026				-	-			
Stage 2	991	-		-	1.6	-	-		
Critical Hdwy	5.74	7.14			-	5.34	-		
Critical Hdwy Stg 1	6.64	-		-	-	-	-		
Critical Hdwy Stg 2	6.04	-			-		-		
Follow-up Hdwy	3.82	3.92		-	-	3.12	-		
Pot Cap-1 Maneuver	7	92			-	~ 36	-		
Stage 1	12	-		-	-	-	-		
Stage 2	289	+		-	-				
Platoon blocked, %				-	-		-		
Mov Cap-1 Maneuver	0	92		-	-	~ 36	-		
Mov Cap-2 Maneuver	0	_		-	-	-			
Stage 1	12			-	-	-	-		
Stage 2	0			-	-	-	-		
Approach	NW	-		NE		SW			
HCM Control Delay, s	144.8			0		111.6			
HCM LOS	F					11117			
Minor Lane/Major Mvmt	NET	NERNWLn1	SWL	SWT	XX	S-19-00-	12545		
Capacity (veh/h)	-	- 92	~ 36	-					
HCM Lane V/C Ratio		- 0.881		-					
HCM Control Delay (s)		- 144.85			×				
HCM Lane LOS		- 144.0 F	F 1526	-					
HCM 95th %tile Q(veh)		- 4.9	16.2						
		- 4.9	10.2						
Votes				North Control				A 7 () ()	
 Volume exceeds capacity 	\$: De	lay exceeds 3	00s	+: Computation	Not De	efined *: All	major vo	lume in platoon	

7		. 3			
	6	/21	120	01	6

Movement	NWL	NWR		NET	NER	SWL	SWT
Lane Configurations	W			ተ ተጉ	THE STATE OF THE S	*	ተ ተተ
Traffic Vol, veh/h	33	108		2028	43	30	2254
Future Vol, veh/h	33	108		2028	43	30	2254
Conflicting Peds, #/hr	2	1		0	8	8	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	-	None		1100	None	-	25/30/10 motors
Storage Length	0	-			-	80	-
Veh in Median Storage, #	0	-		0	-	_	0
Grade, %	0	-		0	-	-	0
Peak Hour Factor	98	98		98	98	98	98
Heavy Vehicles, %	1	1		1	1	1	1
Mvmt Flow	34	110		2069	44	31	2300
M4111111111111111111111111111111111111	- 77.0						
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	3082	1066		0	0	2121	0
Stage 1	2099	-		· ·		2121	-
Stage 2	983						
Critical Hdwy	5.72	7.12				5.32	
Critical Hdwy Stg 1	6.62	1.12		-		0.02	-
Critical Hdwy Stg 2	6.02						
Follow-up Hdwy	3.81	3.91				3.11	
Pot Cap-1 Maneuver	~ 24	189				110	
Stage 1	50	-		_	-	-	
Stage 2	294						
Platoon blocked, %	201				-		
Mov Cap-1 Maneuver	~ 17	187				110	
Mov Cap-2 Maneuver	~ 17	-		-	-	-	
Stage 1	50						
Stage 2	211					_	
Approach	NW			NE		SW	
HCM Control Delay, s	\$ 868.4		-	0		0.7	
HCM LOS	Ф 000.4 F			0		0.7	
TIOWI LOG	r						
Minor Lang/Major Mund	NET	NERNWLn1	SWL	SWT			
Minor Lane/Major Mvmt Capacity (veh/h)	NET	- 56	110	5001			
HCM Lane V/C Ratio							
		- 2.569 -\$ 868.4		-			
HCM Control Delay (s) HCM Lane LOS			49.9	-			
HCM 95th %tile Q(veh)	-	- F	E				
	-	- 14.7	1	•			
Notes							

	1	Ť	1	M	+	1	1	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations		1			44	7	Y	ተተ _ጉ		19	ተ ተጉ	
Traffic Volume (veh/h)	0	449	71	0	638	95	191	2857	112	79	1598	49
Future Volume (veh/h)	0	449	71	0	638	95	191	2857	112	79	1598	49
Number	7	4	14	3	8	18	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	1900	0	1863	1863	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	0	458	72	0	651	97	195	2915	0	81	1631	0
Adj No. of Lanes	0	2	0	0	2	1	1	3	0	1	3	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh, %	0	2	2	0	2	2	2	2	2	2	2	2
Cap, veh/h	0	548	86	0	633	358	279	3481	0	106	3363	0
Arrive On Green	0.00	0.06	0.06	0.00	0.18	0.18	0.05	0.68	0.00	0.03	0.66	0.00
Sat Flow, veh/h	0	3156	479	0	3632	1567	1774	5253	0	1774	5253	0
Grp Volume(v), veh/h	0	263	267	0	651	97	195	2915	0	81	1631	0
Grp Sat Flow(s),veh/h/ln	0	1770	1773	0	1770	1567	1774	1695	0	1774	1695	0
Q Serve(g_s), s	0.0	28.0	28.3	0.0	34.0	9.7	6.8	80.5	0.0	2.8	30.4	0.0
Cycle Q Clear(g_c), s	0.0	28.0	28.3	0.0	34.0	9.7	6.8	80.5	0.0	2.8	30.4	0.0
Prop In Lane	0.00		0.27	0.00	0 110	1.00	1.00	00.0	0.00	1.00	00.1	0.00
Lane Grp Cap(c), veh/h	0	317	317	0	633	358	279	3481	0.00	106	3363	0.00
V/C Ratio(X)	0.00	0.83	0.84	0.00	1.03	0.27	0.70	0.84	0.00	0.76	0.48	0.00
Avail Cap(c_a), veh/h	0	317	317	0	633	358	537	3481	0.00	406	3363	0.00
HCM Platoon Ratio	1.00	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	86.6	86.7	0.0	78.0	60.3	15.6	22.1	0.0	44.4	16.0	0.0
Incr Delay (d2), s/veh	0.0	16.6	17.6	0.0	43.1	0.3	3.2	2.6	0.0	4.2	0.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	15.2	15.5	0.0	20.4	9.1	4.6	38.3	0.0	2.9	14.4	0.0
LnGrp Delay(d),s/veh	0.0	103.1	104.3	0.0	121.1	60.6	18.8	24.7	0.0	48.6	16.5	0.0
LnGrp LOS	0.0	F	F	0.0	F	E	В	C	0.0	D	В	0.0
Approach Vol, veh/h		530			748			3110			1712	
Approach Delay, s/veh		103.7			113.2			24.3			18.1	-
Approach LOS		F			F			C C			В	-
								· ·				
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	16.3	132.7		41.0	11.9	137.1		41.0				
Change Period (Y+Rc), s	7.0	7.0		7.0	7.0	7.0		7.0				
Max Green Setting (Gmax), s	37.0	98.0		34.0	37.0	98.0		34.0				
Max Q Clear Time (g_c+l1), s	8.8	32.4		30.3	4.8	82.5		36.0				
Green Ext Time (p_c), s	0.6	62.4		2.3	0.1	15.3		0.0				
Intersection Summary												3 1
HCM 2010 Ctrl Delay			40.4									
HCM 2010 LOS			D									
					-						-	
Notes												-

	M	1	7	4	1	J.	*	*	4	4	K	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		1			ተ	79	"	ተተቡ		19	ተ ቀጉ	
Traffic Volume (vph)	0	449	71	0	638	95	191	2857	112	79	1598	49
Future Volume (vph)	0	449	71	0	638	95	191	2857	112	79	1598	49
Confl. Peds. (#/hr)	6		6	6		6	5		8	8		5
Confl. Bikes (#/hr)												
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Turn Type		NA			NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8	1	1	6		5	2	
Permitted Phases						8	6			2		
Detector Phase		4			8	18	1	6		5	2	
Switch Phase												
Minimum Initial (s)		7.0			7.0	5.0	5.0	7.0		5.0	7.0	
Minimum Split (s)		32.0			30.0	12.0	12.0	33.0		12.0	33.0	
Total Split (s)		41.0			41.0	44.0	44.0	105.0		44.0	105.0	
Total Split (%)		21.6%			21.6%	23.2%	23.2%	55.3%		23.2%	55.3%	
Yellow Time (s)		4.0			4.0	5.0	5.0	5.0		5.0	5.0	
All-Red Time (s)		3.0			3.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Lead/Lag						Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes		Yes	Yes	
Recall Mode		None			None	None	None	C-Max		None	C-Max	

Cycle Length: 190 Actuated Cycle Length: 190

Offset: 7 (4%), Referenced to phase 2:SWTL and 6:NETL, Start of Yellow

Natural Cycle: 120

Control Type: Actuated-Coordinated

Splits and Phases: 2: Red Rd & South Dixie Hwy

	M	1	7"	4	+	لر	*	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWI
Lane Configurations		1			个个	7"	N,	ተተ _ጉ		7	ተ ቀጉ	
Traffic Volume (veh/h)	0	531	65	0	575	290	177	2017	125	106	2156	5
Future Volume (veh/h)	0	531	65	0	575	290	177	2017	125	106	2156	5
Number	7	4	14	3	8	18	1	6	16	5	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.99	1.00		1.00	1.00		1.0
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Adj Sat Flow, veh/h/ln	0	1881	1900	0	1881	1881	1881	1881	1900	1881	1881	190
Adj Flow Rate, veh/h	0	547	67	0	593	299	182	2079	0	109	2223	
Adj No. of Lanes	0	2	0	0	2	1	1	3	0	1	3	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.9
Percent Heavy Veh, %	0	1	1	0	1	1	1	1	1	1	1	
Cap, veh/h	0	572	70	0	640	367	202	3489	0	186	3375	
Arrive On Green	0.00	0.24	0.24	0.00	0.18	0.18	0.05	0.68	0.00	0.03	0.66	0.0
Sat Flow, veh/h	0	3289	390	0	3668	1578	1792	5305	0	1792	5305	0.0
Grp Volume(v), veh/h	0	305	309	0	593	299	182	2079	0	109	2223	
Grp Sat Flow(s), veh/h/ln	0	1787	1798	0	1787	1578	1792	1712	0	1792	1712	
Q Serve(g_s), s	0.0	32.0	32.2	0.0	31.0	34.0	7.7	41.4	0.0	3.8	49.7	0.0
Cycle Q Clear(g_c), s	0.0	32.0	32.2	0.0	31.0	34.0	7.7	41.4	0.0	3.8	49.7	0.
Prop In Lane	0.00	32.0	0.22	0.00	31.0	1.00	1.00	41.4	0.00	1.00	49.7	0.0
	0.00	320	322	0.00	640	367	202	3489	0.00	186	3375	0.0
Lane Grp Cap(c), veh/h	0.00	0.95	0.96	0.00	0.93	0.81	0.90	0.60	0.00	0.59	0.66	
V/C Ratio(X)					640	367						0.0
Avail Cap(c_a), veh/h	1.00	320	322 1.33	1.00			314	3489	1.00	338	3375	4.00
HCM Platoon Ratio	1.00	1.33		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	71.6	71.7	0.0	76.8	69.1	40.1	16.4	0.0	17.8	19.7	0.0
Incr Delay (d2), s/veh	0.0	38.0	39.3	0.0	19.7	12.8	19.2	0.8	0.0	1.1	1.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	19.1	19.5	0.0	17.1	29.1	10.5	19.7	0.0	2.5	23.8	0.0
LnGrp Delay(d),s/veh	0.0	109.6	111.0	0.0	96.4	81.9	59.3	17.2	0.0	18.9	20.7	0.0
LnGrp LOS		F	F	_	F	F	E	В		В	С	
Approach Vol, veh/h		614			892			2261			2332	
Approach Delay, s/veh		110.3			91.5			20.6			20.6	
Approach LOS		F			F			С			C	
Timer	-4	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	17.1	131.9		41.0	12.9	136.1		41.0				
Change Period (Y+Rc), s	7.0	7.0		7.0	7.0	7.0		7.0				
Max Green Setting (Gmax), s	22.0	113.0		34.0	22.0	113.0		34.0				
Max Q Clear Time (g_c+l1), s	9.7	51.7		34.2	5.8	43.4		36.0				
Green Ext Time (p_c), s	0.4	56.6		0.0	0.1	63.6		0.0				
ntersection Summary			108									
HCM 2010 Ctrl Delay			40.0									
HCM 2010 LOS			D									

	47	1	7	4	ţ	لر	*	×	4	4	K	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		1			个个	7"	7	ተተ _ጉ		1/2	ተ ተጉ	
Traffic Volume (vph)	0	531	65	0	575	290	177	2017	125	106	2156	53
Future Volume (vph)	0	531	65	0	575	290	177	2017	125	106	2156	53
Confl. Peds. (#/hr)	8		18	18		8	14		26	26		14
Confl. Bikes (#/hr)												
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Turn Type		NA			NA	pm+ov	pm+pt	NA		pm+pt	NA	
Protected Phases		4			8	1	1	6		5	2	
Permitted Phases						8	6			2		
Detector Phase		4			8	18	1	6		5	2	
Switch Phase												
Minimum Initial (s)		7.0			7.0	5.0	5.0	7.0		5.0	7.0	
Minimum Split (s)		32.0			30.0	12.0	12.0	33.0		12.0	33.0	
Total Split (s)		41.0			41.0	29.0	29.0	120.0		29.0	120.0	
Total Split (%)		21.6%			21.6%	15.3%	15.3%	63.2%		15.3%	63.2%	
Yellow Time (s)		4.0			4.0	5.0	5.0	5.0		5.0	5.0	
All-Red Time (s)		3.0			3.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)		7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Lead/Lag						Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes		Yes	Yes	
Recall Mode		None			None	None	None	C-Max		None	C-Max	

Cycle Length: 190

Actuated Cycle Length: 190

Offset: 140 (74%), Referenced to phase 2:SWTL and 6:NETL, Start of Yellow

Natural Cycle: 90

Control Type: Actuated-Coordinated

Splits and Phases: 2: Red Rd & South Dixie Hwy

Intersection		
Intersection Delay, s/veh	9.1	
Intersection LOS	Α	

Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEU	NEL	NET	NER
Lane Configurations			4				4				43	
Traffic Vol, veh/h	0	7	76	63	0	4	13	2	0	81	109	7
Future Vol, veh/h	0	7	76	63	0	4	13	2	0	81	109	7
Peak Hour Factor	0.92	0.80	0.80	0.80	0.92	0.80	0.80	0.80	0.92	0.80	0.80	0.80
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	9	95	79	0	5	16	3	0	101	136	9
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		SE				MARA			W	NE		-

Approach	SE	NW	NE
Opposing Approach	NW	SE	SW
Opposing Lanes	1	1	1
Conflicting Approach Left	SW	NE	SE
Conflicting Lanes Left	1	1	1
Conflicting Approach Right	NE	SW	NW
Conflicting Lanes Right	1	1	1
HCM Control Delay	8.8	8.1	9.7
HCM LOS	A	Α	Α

Lane	NELn1	NWLn1	SELn1	SWLn1
Vol Left, %	41%	21%	5%	5%
Vol Thru, %	55%	68%	52%	94%
Vol Right, %	4%	11%	43%	2%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	197	19	146	66
LT Vol	81	4	7	3
Through Vol	109	13	76	62
RT Vol	7	2	63	1
Lane Flow Rate	246	24	182	82
Geometry Grp	1	1	1	1
Degree of Util (X)	0.313	0.032	0.228	0.108
Departure Headway (Hd)	4.572	4.91	4.488	4.7
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	786	727	799	761
Service Time	2.603	2.954	2.518	2.737
HCM Lane V/C Ratio	0.313	0.033	0.228	0.108
HCM Control Delay	9.7	8.1	8.8	8.3
HCM Lane LOS	A	Α	Α	A
HCM 95th-tile Q	1.3	0.1	0.9	0.4

-					•	
n	e	re	0	nt	w	1

Intersection Delay, s/veh

Intersection LOS				
Movement	SWU	SWL	SWT	SWR
Lane Configurations			4	
Traffic Vol, veh/h	0	3	62	1
Future Vol, veh/h	0	3	62	1
Peak Hour Factor	0.92	0.80	0.80	0.80
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	4	78	1
Number of Lanes	0	0	1	0
Approach		SW		
Opposing Approach		NE		
Opposing Lanes		1		
Conflicting Approach Left		NW		
Conflicting Lanes Left		1		
Conflicting Approach Right		SE		
Conflicting Lanes Right		1		
HCM Control Delay		8.3		
HCM LOS		Α		

		and the second second
Intersection		
Intersection Delay, s/veh	8.8	
Intersection LOS	Α	

Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEU	NEL	NET	NER
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	27	58	53	0	10	64	4	0	75	71	24
Future Vol, veh/h	0	27	58	53	0	10	64	4	0	75	71	24
Peak Hour Factor	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1
Mvmt Flow	0	30	64	58	0	11	70	4	0	82	78	26
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		SE				NW				NE	8.33	
Opposing Approach		NW				SE				SW		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SW				NE				SE		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NE				SW				NW		
Conflicting Lanes Right		1				1				1		- 1
HCM Control Delay		8.7				8.5				9.1		
HCM LOS		Α				Α				A		

Lane	NELn1	NWLn1	SELn1	SWLn1	
Vol Left, %	44%	13%	20%	8%	
Vol Thru, %	42%	82%	42%	74%	
Vol Right, %	14%	5%	38%	18%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	170	78	138	114	
LT Vol	75	10	27	9	
Through Vol	71	64	58	84	
RT Vol	24	4	53	21	
Lane Flow Rate	187	86	152	125	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.24	0.115	0.192	0.16	
Departure Headway (Hd)	4.627	4.826	4.563	4.603	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	775	741	784	777	
Service Time	2.665	2.87	2.602	2.645	
HCM Lane V/C Ratio	0.241	0.116	0.194	0.161	
HCM Control Delay	9.1	8.5	8.7	8.5	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.9	0.4	0.7	0.6	

m	te	ro	۸	^	п	a	'n
ш	LE.	2	G	v	Ц	U	П

Intersection Delay, s/veh Intersection LOS

Intersection LOS				
Movement	SWU	SWL	SWT	SWR
Lane Configurations			4	
Traffic Vol, veh/h	0	9	84	21
Future Vol, veh/h	0	9	84	21
Peak Hour Factor	0.92	0.91	0.91	0.91
Heavy Vehicles, %	1	1	1	1
Mvmt Flow	0	10	92	23
Number of Lanes	0	0	1	0
Approach		SW		
Opposing Approach		NE		
Opposing Lanes		1		
Conflicting Approach Left		NW		
Conflicting Lanes Left		1		
Conflicting Approach Right		SE		
Conflicting Lanes Right		1		
HCM Control Delay		8.5		

Intersection								
Int Delay, s/veh	4.1							
Movement		NBT	NBR	SBL	SBT	SWL	SWR	
Lane Configurations		1		M	ተተ	Ŋ	71	
Traffic Vol, veh/h		426	157	148		77	62	
Future Vol, veh/h		426	157	148		77	62	
Conflicting Peds, #/hr		0	4	4	0	1	0	
Sign Control		Free	Free	Free	Free	Stop	Stop	
RT Channelized		-	None		None		Stop	
Storage Length		-	-	92	-	0	50	
/eh in Median Storage, #		0	-	-	0	0	-	
Grade, %		0	-		0	0	-	
Peak Hour Factor		95	95	95	95	95	95	
Heavy Vehicles, %		2	2	2		2	2	
Mvmt Flow		448	165	156		81	65	
Major/Minor	M	lajor1		Major2		Minor1		La Sand of the Sand
Conflicting Flow All		0	0	618	0	1195	311	
Stage 1		-	-		-	535	-	
Stage 2		- 4	-	-	-	660		
Critical Hdwy		-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1		-		_	-	5.84	-	
Critical Hdwy Stg 2		+	-		-	5.84	-	
Follow-up Hdwy		-		2.22	-	3.52	3.32	
Pot Cap-1 Maneuver		-	-	958	-	179	685	
Stage 1		-	÷	-	-	551	-	
Stage 2		-	-			476		
Platoon blocked, %		-	-		-			
Mov Cap-1 Maneuver		-	-	958	-	149	682	
Mov Cap-2 Maneuver		-	-		7	149		
Stage 1		4	-		2.	549		
Stage 2		-	-			398	•	
Approach		NB		SB		SW		
HCM Control Delay, s		0		1.7		35.2		
HCM LOS		U		1.7		55.2 E		
IOW LOS						-		
Minor Lane/Major Mvmt	NBT	NBR	SBL	SBTSWLn1	SWLn2			
Capacity (veh/h)		-	958	- 149	682			
HCM Lane V/C Ratio		-	0.163	- 0.544	0.096			
HCM Control Delay (s)		-	9.5	- 54.8	10.8			
HCM Lane LOS		-	Α	- F	В			
HCM 95th %tile Q(veh)			0.6	- 2.7	0.3			

Intersection	0							
Int Delay, s/veh	6							
Movement		NBT	NBR	SBL	SBT	SWL	SWR	
Lane Configurations		1		1/2	ተተ	N,	7	
Traffic Vol, veh/h		482	101	100	700	108	95	
Future Vol, veh/h		482	101	100	700	108	95	
Conflicting Peds, #/hr		0	18	18	0	5	6	
Sign Control		Free	Free	Free	Free	Stop	Stop	
RT Channelized			None		None		Stop	
Storage Length		-	-	92	-	0	50	
Veh in Median Storage, #		0	-	-	0	0	-	
Grade, %		0	-	-	0	0	-	
Peak Hour Factor		94	94	94	94	94	94	
Heavy Vehicles, %		1	1	1	1	1	1	
Mvmt Flow		513	107	106	745	115	101	
Major/Minor	Ma	ajor1		Major2	F	Minor1		
Conflicting Flow All	1910	0	0	638	0	1174	334	
Stage 1		_	-	-	-	584	-	
Stage 2		-	-		-	590		
Critical Hdwy		-	-	4.12		6.82	6.92	
Critical Hdwy Stg 1		-	-			5.82	-	
Critical Hdwy Stg 2			-		-	5.82	0.2	
Follow-up Hdwy			-	2.21	-	3.51	3.31	
Pot Cap-1 Maneuver		-		949		186	665	
Stage 1		-	-	_	-	523	-	
Stage 2		-	-	-	-	520		
Platoon blocked, %		-	-		-			
Mov Cap-1 Maneuver		-	4	944	- 4	162	650	
Mov Cap-2 Maneuver		-	-	-	-	162	-	
Stage 1		-	¥		-	514		
Stage 2			-		-	459		
Approach		NB		SB		SW		
HCM Control Delay, s		0		1.2		41.8		
HCM LOS		U		1.2		41.8 E		
IOW LOG						-		
Minor Lane/Major Mvmt	NBT N	VBR	SBL	SBTSWLn1S	WLn2			
Capacity (veh/h)		-	944	- 162	650			
HCM Lane V/C Ratio	-	-	0.113	- 0.709	0.155			
HCM Control Delay (s)		+	9.3	- 68.4	11.6			
HCM Lane LOS	-	-	Α	- F	В			
HCM 95th %tile Q(veh)	-	-	0.4	- 4.2	0.5			

	1	-	4	1	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		W C
Lane Configurations	1/5	^	1>		Y	7		
Traffic Volume (vph)	94	433	286	26	37	105		
Future Volume (vph)	94	433	286	26	37	105		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.0	5.0	5.0	1000	5.0	5.0		
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00		
Frpb, ped/bikes	1.00	1.00	1.00		1.00	0.99		
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00		
Frt	1.00	1.00	0.99		1.00	0.85		
Flt Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1751	1845	1820		1752	1559		
Flt Permitted	0.47	1.00	1.00		0.95	1.00		
Satd. Flow (perm)	875	1845	1820		1752	1559		
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93		
Adj. Flow (vph)	101	466	308		40			
				28		113		
RTOR Reduction (vph)	101	0	4	0	0	77		
Lane Group Flow (vph)	101	466	332	0	40	36		
Confl. Peds. (#/hr)	3	00/	00/	3	4	2		
Heavy Vehicles (%)	3%	3%	3%	3%	3%	3%		
Turn Type	pm+pt	NA	NA		Prot	custom		
Protected Phases	1	6	2		8	8		
Permitted Phases	6					1		
Actuated Green, G (s)	55.0	55.0	45.0		20.0	27.0		
Effective Green, g (s)	55.0	55.0	45.0		20.0	27.0		
Actuated g/C Ratio	0.65	0.65	0.53		0.24	0.32		
Clearance Time (s)	3.0	5.0	5.0		5.0	5.0		
Lane Grp Cap (vph)	638	1193	963		412	586		
v/s Ratio Prot	0.01	c0.25	0.18		c0.02	0.01		
v/s Ratio Perm	0.09				17	0.01		
v/c Ratio	0.16	0.39	0.35		0.10	0.06		
Uniform Delay, d1	6.0	7.1	11.5		25.4	20.2		
Progression Factor	1.00	1.00	1.00		1.00	1.00		
Incremental Delay, d2	0.5	1.0	1.0		0.5	0.2		
Delay (s)	6.5	8.0	12.5		25.9	20.4		
Level of Service	Α	Α	В		С	С		
Approach Delay (s)	77	7.8	12.5		21.8			
Approach LOS		A	В		C			
Intersection Summary				3 13				
HCM 2000 Control Delay			11.3	Н	CM 2000	Level of Service	е В	
HCM 2000 Volume to Capa	city ratio		0.33				Yes and the second	
Actuated Cycle Length (s)	and Windows N. S.		85.0	Sı	um of los	t time (s)	13.0	
Intersection Capacity Utiliza	ation		39.4%			of Service	A	
Analysis Period (min)	W. E. V.		15	, ,		STATE OF THE STATE		
c Critical Lane Group			- 10					

	1	-	-	1	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	^	P		19	7"	
Traffic Volume (vph)	94	433	286	26	37	105	
Future Volume (vph)	94	433	286	26	37	105	
Confl. Peds. (#/hr)	3			3	4	2	
Confl. Bikes (#/hr)							
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Growth Factor	100%	100%	100%	100%	100%	100%	
Heavy Vehicles (%)	3%	3%	3%	3%	3%	3%	
Bus Blockages (#/hr)	0	0	0	0	0	0	
Parking (#/hr)							
Mid-Block Traffic (%)		0%	0%		0%		
Shared Lane Traffic (%)							
Turn Type	pm+pt	NA	NA		Prot	custom	
Protected Phases	1	6	2		8	8	
Permitted Phases	6					1	
Detector Phase	1	6	2		8	8	
Switch Phase							
Minimum Initial (s)	5.0	15.0	15.0		7.0	7.0	
Minimum Split (s)	9.5	23.0	23.0		23.0	23.0	
Total Split (s)	10.0	60.0	50.0		25.0	25.0	
Total Split (%)	11.8%	70.6%	58.8%		29.4%	29.4%	
Yellow Time (s)	3.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	0.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	3.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead		Lag				
Lead-Lag Optimize?	Yes		Yes				
Recall Mode	Max	Max	Max		Max	Max	
Intersection Summary			_		-		

Cycle Length: 85

Actuated Cycle Length: 85

Offset: 77.5 (91%), Referenced to phase 2:WBT and 6:EBTL, Start of Yellow

Natural Cycle: 60 Control Type: Pretimed

Splits and Phases: 5: SW 72nd St & Yumuri St

	1	-	-	1	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	*1	^	ß		19	7"		
Traffic Volume (vph)	125	405	336	41	173	173		
Future Volume (vph)	125	405	336	41	173	173		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.0	5.0	5.0		5.0	5.0		
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00		
Frpb, ped/bikes	1.00	1.00	1.00		1.00	0.99		
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00		
Frt	1.00	1.00	0.99		1.00	0.85		
Fit Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1787	1881	1849		1787	1590		
FIt Permitted	0.41	1.00	1.00		0.95	1.00		
Satd. Flow (perm)	775	1881	1849		1787	1590		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	137	445	369	45	190	190		
RTOR Reduction (vph)	0	0	5	0	0	130		
Lane Group Flow (vph)	137	445	409	Õ	190	60		
Confl. Peds. (#/hr)	1			1	10	1		
Turn Type	pm+pt	NA	NA		Prot	custom		
Protected Phases	1	6	2		8	8		
Permitted Phases	6	•	-		U	1		
Actuated Green, G (s)	55.0	55.0	45.0		20.0	27.0		
Effective Green, g (s)	55.0	55.0	45.0		20.0	27.0		
Actuated g/C Ratio	0.65	0.65	0.53		0.24	0.32		
Clearance Time (s)	3.0	5.0	5.0		5.0	5.0		
Lane Grp Cap (vph)	584	1217	978		420	598		
//s Ratio Prot	0.02	c0.24	c0.22		c0.11	0.02		
//s Ratio Perm	0.13	00.24	00.22		00.11	0.02		
//c Ratio	0.13	0.37	0.42		0.45	0.10		
Uniform Delay, d1	6.4	6.9	12.1		27.8	20.4		
Progression Factor	1.00	1.00	1.00		1.00	1.00		
ncremental Delay, d2	0.9	0.9	1.3		3.5	0.3		
Delay (s)	7.4	7.8	13.4		31.3	20.8		
evel of Service	7.4 A	7.8 A	13.4 B		C C	C C		
Approach Delay (s)	^	7.7	13.4		26.0	U		
Approach LOS		A	В		20.0 C			
Intersection Summary								
HCM 2000 Control Delay			14.5	Н	CM 2000	Level of Service	е В	
HCM 2000 Volume to Capa	acity ratio		0.42				7	
Actuated Cycle Length (s)	, , , , ,		85.0	Si	ım of los	t time (s)	13.0	
Intersection Capacity Utiliza	ation		48.4%			of Service	A	
Analysis Period (min)	elline see		15		VIII VIII VIII VIII VIII VIII VIII VII			
c Critical Lane Group								

	1	-	-	1	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	1	1>		19	7
Traffic Volume (vph)	125	405	336	41	173	173
Future Volume (vph)	125	405	336	41	173	173
Confl. Peds. (#/hr)	1			1	10	1
Confl. Bikes (#/hr)						
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Growth Factor	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0
Parking (#/hr)						
Mid-Block Traffic (%)		0%	0%		0%	
Shared Lane Traffic (%)						
Turn Type	pm+pt	NA	NA		Prot	custom
Protected Phases	1	6	2		8	8
Permitted Phases	6					1
Detector Phase	1	6	2		8	8
Switch Phase						
Minimum Initial (s)	5.0	15.0	15.0		7.0	7.0
Minimum Split (s)	9.5	23.0	23.0		23.0	23.0
Total Split (s)	10.0	60.0	50.0		25.0	25.0
Total Split (%)	11.8%	70.6%	58.8%		29.4%	29.4%
Yellow Time (s)	3.0	4.0	4.0		4.0	4.0
All-Red Time (s)	0.0	1.0	1.0		1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0
Total Lost Time (s)	3.0	5.0	5.0		5.0	5.0
Lead/Lag	Lead		Lag		1000	
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	Max	Max	Max		Max	Max
Intersection Summary						
Cycle Length: 85		_				-
Actuated Cycle Length: 85						
Offset: 77.5 (91%), Referen		se 2·MRT	and 6:FF	RTI Star	t of Vallo	AAT.
Natural Cycle: 60	noed to pila	3C 2. VVD	and O.L.	JIL, Olai	t of Tello	VV
Control Type: Pretimed						
Control Type: Pretimed						

Splits and Phases: 5: SW 72nd St & Yumuri St

₱Ø6 (R)

	1	-	1	1	4	1	1	1	-	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	4	P		1	^	74	1	^	7	19	1	7
Traffic Volume (vph)	134	265	35	114	197	43	95	467	117	100	333	98
Future Volume (vph)	134	265	35	114	197	43	95	467	117	100	333	98
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.98		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1767	1822		1770	1863	1559	1749	1863	1542	1770	1863	1533
FIt Permitted	0.39	1.00		0.17	1.00	1.00	0.46	1.00	1.00	0.35	1.00	1.00
Satd. Flow (perm)	721	1822		319	1863	1559	856	1863	1542	650	1863	1533
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	147	291	38	125	216	47	104	513	129	110	366	108
RTOR Reduction (vph)	0	3	0	0	0	34	0	0	43	0	0	38
Lane Group Flow (vph)	147	326	0	125	216	13	104	513	86	110	366	70
Confl. Peds. (#/hr)	3		5	5		3	16		8	8		16
Turn Type	pm+pt	NA		pm+pt	NA	custom	pm+pt		custom	pm+pt	NA	custom
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		14	6		76	2		32
Actuated Green, G (s)	51.6	39.6		50.8	39.2	54.2	114.5	105.5	123.1	115.1	105.8	123.8
Effective Green, g (s)	51.6	39.6		50.8	39.2	54.2	114.5	105.5	123.1	115.1	105.8	123.8
Actuated g/C Ratio	0.27	0.21		0.27	0.21	0.29	0.60	0.56	0.65	0.61	0.56	0.65
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	2.0	2.5	1	2.0	2.5		2.0	1.0		2.0	1.0	
Lane Grp Cap (vph)	261	379		173	384	444	558	1034	999	448	1037	998
v/s Ratio Prot	0.04	c0.18		c0.04	0.12		0.01	c0.28		c0.01	0.20	
v/s Ratio Perm	0.12			0.15		0.01	0.10		0.06	0.14		0.05
v/c Ratio	0.56	0.86		0.72	0.56	0.03	0.19	0.50	0.09	0.25	0.35	0.07
Uniform Delay, d1	56.2	72.5		57.1	67.7	49.0	16.6	25.9	12.5	18.1	23.2	12.1
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.56	1.23	0.08
Incremental Delay, d2	2.3	17.2		11.9	1.5	0.0	0.1	1.7	0.0	0.1	0.5	0.1
Delay (s)	58.5	89.7		69.0	69.2	49.0	16.7	27.6	12.5	28.2	29.1	1.0
Level of Service	E	F		Е	Ε	D	В	С	В	С	C	Α
Approach Delay (s)		80.0			66.7			23.5			23.7	
Approach LOS		F			Е			С			С	
Intersection Summary												
HCM 2000 Control Delay			43.5	Н	JM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.58						27.5			
Actuated Cycle Length (s)	Venn		190.0			t time (s)			24.0			
Intersection Capacity Utiliza	ation		75.6%	IC	U Level	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

100	Existing Aivi
	6/21/2016

	1	-	*	-	-	*	4	†	1	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	N.	ĵ»		M	^	7"	19	1	7"	19	↑	7
Traffic Volume (vph)	134	265	35	114	197	43	95	467	117	100	333	98
Future Volume (vph)	134	265	35	114	197	43	95	467	117	100	333	98
Confl. Peds. (#/hr)	3		5	5		3	16		8	8		16
Confl. Bikes (#/hr)												
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Turn Type	pm+pt	NA		pm+pt	NA	custom	pm+pt	NA	custom	pm+pt	NA	custom
Protected Phases	3	8		7	4		1	6		5	2	TIVE
Permitted Phases	8			4		14	6		76	2	-	32
Detector Phase	3	8		7	4	14	1	6	76	5	2	3 2
Switch Phase												
Minimum Initial (s)	5.0	7.0		5.0	7.0		5.0	7.0		5.0	7.0	
Minimum Split (s)	11.0	29.0		11.0	29.0		11.0	28.0		11.0	28.0	
Total Split (s)	18.0	64.0		18.0	64.0		12.0	96.0		12.0	96.0	
Total Split (%)	9.5%	33.7%		9.5%	33.7%		6.3%	50.5%		6.3%	50.5%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	C-Max	None		None	None		None	Max		None	Max	

Cycle Length: 190

Actuated Cycle Length: 190 Offset: 78 (41%), Referenced to phase 3:EBL, Start of Yellow

Natural Cycle: 80

Control Type: Actuated-Coordinated

Splits and Phases: 6: SW 72nd St & Red Rd

	-	-	1	-	4	1	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	ĵ»		M	1	79	M	1	7"	7	1	7"
Traffic Volume (vph)	110	238	52	188	262	22	79	320	144	73	477	209
Future Volume (vph)	110	238	52	188	262	22	79	320	144	73	477	209
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.98		1.00	1.00	0.98	1.00	1.00	0.94	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00
Frt	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1785	1790		1787	1881	1569	1787	1881	1510	1701	1881	1536
Fit Permitted	0.25	1.00		0.19	1.00	1.00	0.38	1.00	1.00	0.51	1.00	1.00
Satd. Flow (perm)	471	1790		354	1881	1569	722	1881	1510	907	1881	1536
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	112	243	53	192	267	22	81	327	147	74	487	213
RTOR Reduction (vph)	0	5	0	0	0	16	0	0	48	0	0	65
Lane Group Flow (vph)	112	291	0	192	267	6	81	327	99	74	487	148
Confl. Peds. (#/hr)	6		26	26		6	27		49	49		27
Turn Type	pm+pt	NA		pm+pt	NA	custom	pm+pt	NA	custom	pm+pt	NA	custom
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		14	6		76	2		3 2
Actuated Green, G (s)	47.0	36.0		47.0	36.0	49.7	119.3	111.6	128.6	118.7	111.3	128.3
Effective Green, g (s)	47.0	36.0		47.0	36.0	49.7	119.3	111.6	128.6	118.7	111.3	128.3
Actuated g/C Ratio	0.25	0.19		0.25	0.19	0.26	0.63	0.59	0.68	0.62	0.59	0.68
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	2.0	2.5		2.0	2.5		2.0	1.0		2.0	1.0	
Lane Grp Cap (vph)	192	339		170	356	410	496	1104	1022	597	1101	1037
v/s Ratio Prot	0.03	0.16		c0.07	0.14		c0.01	0.17		0.00	c0.26	
v/s Ratio Perm	0.11			c0.21		0.00	0.10		0.07	0.07		0.10
v/c Ratio	0.58	0.86		1.13	0.75	0.01	0.16	0.30	0.10	0.12	0.44	0.14
Uniform Delay, d1	58.7	74.5		67.4	72.7	52.0	15.4	19.6	10.6	14.3	22.0	11.1
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.24	0.14
Incremental Delay, d2	3.7	18.7		108.0	8.2	0.0	0.1	0.7	0.0	0.0	0.9	0.2
Delay (s)	62.4	93.3		175.5	80.9	52.0	15.4	20.3	10.6	21.5	28.2	1.7
Level of Service	E	F		F	F	D	В	C	В	С	C	Α
Approach Delay (s)		84.8			117.4			17.0			20.3	
Approach LOS		F			F			В			С	
Intersection Summary												
HCM 2000 Control Delay			52.4	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.62									
Actuated Cycle Length (s)			190.0			t time (s)			24.0			
Intersection Capacity Utiliza	ation		79.1%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	-	-	1	1	4	*	1	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	19	1>		Ŋ	^	75	7	1	7"	1/2	1	7
Traffic Volume (vph)	110	238	52	188	262	22	79	320	144	73	477	209
Future Volume (vph)	110	238	52	188	262	22	79	320	144	73	477	209
Confl. Peds. (#/hr)	6		26	26		6	27		49	49		27
Confl. Bikes (#/hr)												
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Turn Type	pm+pt	NA		pm+pt	NA	custom	pm+pt	NA	custom	pm+pt	NA	custom
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		14	6		76	2		3 2
Detector Phase	3	8		7	4	14	1	6	76	5	2	32
Switch Phase												
Minimum Initial (s)	5.0	7.0		5.0	7.0		5.0	7.0		5.0	7.0	100
Minimum Split (s)	11.0	29.0		11.0	29.0		11.0	28.0		11.0	28.0	
Total Split (s)	17.0	59.0		17.0	59.0		21.0	93.0		21.0	93.0	
Total Split (%)	8.9%	31.1%		8.9%	31.1%		11.1%	48.9%		11.1%	48.9%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	C-Max	None		None	None		None	Max		None	Max	

Cycle Length: 190 Actuated Cycle Length: 190

Actuated Cycle Length: 190 Offset: 20 (11%), Referenced to phase 3:EBL, Start of Yellow

Natural Cycle: 80

Control Type: Actuated-Coordinated

Splits and Phases: 6: SW 72nd St & Red Rd

Future without Project Conditions

Intersection									
Int Delay, s/veh 52.	6								
Movement	NWL	NWR		NET	NER	SWL	SWT		
Lane Configurations	N/V			ተተ ኈ		N.			
Traffic Vol, veh/h	2	79		2927	27	138	1756		
Future Vol, veh/h	2	79		2927	27	138	1756		
Conflicting Peds, #/hr	0	0		0	4	4	0		
Sign Control	Stop	Stop		Free	Free	Free	Free		
RT Channelized		None		The state of the s	MENUNCHER FOR		None		
Storage Length	0	_		-	_	80	-		
Veh in Median Storage, #	0	-		0	-		0		
Grade, %	0			0			0		
Peak Hour Factor	95	95		95	95	95	95		
Heavy Vehicles, %	2	2		2	2	2	2		
Mvmt Flow	2	83		3081	28	145	1848		
	_	00		0001		110	1010		
Major/Minor	Minor1			Major1		Major2			
Conflicting Flow All	4129	1559		0	0	3113	0		
Stage 1	3099	1000		-		0110	- L		
Stage 2	1030	2		_	- 4	-	-		
Critical Hdwy	5.74	7.14				5.34	-		
Critical Hdwy Stg 1	6.64	7.17				0.04			
Critical Hdwy Stg 2	6.04								
Follow-up Hdwy	3.82	3.92				3.12			
Pot Cap-1 Maneuver	6	87				~ 33			
Stage 1	11	-			-	- 55			
Stage 2	275						-		
Platoon blocked, %	210								
Mov Cap-1 Maneuver	0	87				~ 33	-		
Mov Cap-1 Maneuver	0	-		-					
	11				-				
Stage 1				-	-		-		
Stage 2	0	•					-		
Approach	NW			NE		SW	V		
HCM Control Delay, s	177.1			0	-	129.3	_		_
HCM LOS	F			U		120.0			
HOW LOS									
Minor Lane/Major Mvmt	NET	NERNWLn1	SWL	SWT					
Capacity (veh/h)	TALL I	- 87	~ 33	-					
HCM Lane V/C Ratio			4.402	-					
HCM Control Delay (s)		- 177.\$					-		
HCM Lane LOS		- 1/7.5	F	-					
		- 5.5	17.2						
HCM 95th %tile Q(veh)		- 0.5	17.2	•					
Notes									
~: Volume exceeds capacity	\$: De	lay exceeds 3	00s	+: Computation	Not D	efined *: All	major vo	lume in platoon	

Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	NWL 33 33 33 2 Stop 0 0 0 98 1 34 Minor1 3212 2159	Stop		NET	NER 43 43 8 Free None 98 1 44	SWL 35 35 8 Free - 80 - 98 1 36	SWT		
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	33 33 2 Stop 0 0 0 98 1 34	115 115 1 Stop None - - - 98 1		2086 2086 0 Free - 0 0 98	43 43 8 Free None - - - 98 1	35 35 8 Free - 80 - - 98 1	2401 2401 0 Free None 0 0 98		
Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	33 33 2 Stop 0 0 0 98 1 34 Minor1	115 1 Stop None - - - 98 1		2086 2086 0 Free - 0 0 98	43 8 Free None - - - 98 1	35 35 8 Free - 80 - - 98 1	2401 2401 0 Free None - 0 0 98 1		
Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1	33 2 Stop 0 0 0 98 1 34 Minor1	115 1 Stop None - - - 98 1		2086 0 Free - 0 0 98 1	43 8 Free None - - - 98 1	35 8 Free - 80 - - 98 1	2401 0 Free None - 0 0 98 1		
Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	2 Stop 0 0 0 98 1 34 Minor1	1 Stop None - - - 98 1 117		0 Free - 0 0 98 1	8 Free None - - - 98 1	8 Free - 80 - - 98 1	0 Free None - 0 0 98 1		
Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	Stop	Stop None - - - 98 1 117		Free 0 0 98 1	Free None - - - 98 1	Free - 80 - - - 98 1	Free None - 0 0 98 1		
RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	0 0 0 98 1 34 Minor1	None - - 98 1 117		- 0 0 98 1	None - - - 98 1	80 - - 98 1	None - 0 0 98 1		
Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	0 0 98 1 34 Minor1 3212	- - 98 1 117		0 0 98 1	- - 98 1	80 - - 98 1	0 0 0 98 1		
Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	0 98 1 34 Minor1 3212	- - 98 1 117		0 98 1	98 1	- - 98 1	0 0 98 1		
Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	0 98 1 34 Minor1 3212	98 1 117		0 98 1	98 1	98 1	0 98 1		
Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	98 1 34 Minor1 3212	1 117		98	98 1	98 1	98 1		
Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	1 34 Minor1 3212	1 117		1	1	1	1		
Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	1 34 Minor1 3212	1 117				1	1		
Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	Minor1 3212			2129	44	36	2450		
Conflicting Flow All Stage 1 Stage 2	3212	1005							
Conflicting Flow All Stage 1 Stage 2	3212	1005							
Stage 1 Stage 2		1005		Major1		Major2	William .	X	
Stage 2	2159	1030		0	0	2180	0		
		-				-			
Critical Hdwy	1053	-		-	-	-	-		
	5.72	7.12			-	5.32	-		
Critical Hdwy Stg 1	6.62	-			-	-	-		
Critical Hdwy Stg 2	6.02	-		-	-	-			
Follow-up Hdwy	3.81	3.91			-	3.11	-		
Pot Cap-1 Maneuver	~ 20	181		-		103	-		
Stage 1	45			_		-	_		
Stage 2	269								
Platoon blocked, %	200				-		-		
Mov Cap-1 Maneuver	~ 13	179				103			
Mov Cap-1 Maneuver	~ 13	170							
Stage 1	45								
		*		•	•				
Stage 2	175				·	-			
Approach	NW			NE		SW			
	\$ 1178.5			0		0.8			
HCM LOS	F					0.0			
TOM EGG									
Minor Lane/Major Mvmt	NET	NERNWLn1	SWL	SWT					
Capacity (veh/h)		- 47	103						
HCM Lane V/C Ratio		- 3.213	0.347	-					
HCM Control Delay (s)	-	\$ 1178.5	57.5	-					
HCM Lane LOS	- 4	- F	F	_					
HCM 95th %tile Q(veh)	-	- 16.4	1.4						
Votes	3.75					3.500		100.00	
~: Volume exceeds capacity			00s		Not Def				

	1	1	7	4	+	الم	*	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations		1 1>			ተ ተ	7	7	ተተጉ		4	ተ ቀጉ	
Traffic Volume (veh/h)	0	500	75	0	644	103	238	2925	113	95	1646	52
Future Volume (veh/h)	0	500	75	0	644	103	238	2925	113	95	1646	52
Number	7	4	14	3	8	18	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1863	1900	0	1863	1863	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	0	510	77	0	657	105	243	2985	0	97	1680	0
Adj No. of Lanes	0	2	0	0	2	1	1	3	0	1	3	0
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh, %	0	2	2	0	2	2	2	2	2	2	2	2
Cap, veh/h	0	551	83	0	633	376	285	3441	0	115	3307	0
Arrive On Green	0.00	0.06	0.06	0.00	0.18	0.18	0.06	0.68	0.00	0.03	0.65	0.00
Sat Flow, veh/h	0	3175	463	0	3632	1567	1774	5253	0	1774	5253	0
Grp Volume(v), veh/h	0	292	295	0	657	105	243	2985	0	97	1680	0
Grp Sat Flow(s),veh/h/ln	0	1770	1775	0	1770	1567	1774	1695	0	1774	1695	0
Q Serve(g_s), s	0.0	31.2	31.4	0.0	34.0	10.4	8.7	87.3	0.0	4.4	32.8	0.0
Cycle Q Clear(g_c), s	0.0	31.2	31.4	0.0	34.0	10.4	8.7	87.3	0.0	4.4	32.8	0.0
Prop In Lane	0.00	01.2	0.26	0.00	01.0	1.00	1.00	07.0	0.00	1.00	02.0	0.00
Lane Grp Cap(c), veh/h	0.00	317	318	0	633	376	285	3441	0.00	115	3307	0.00
V/C Ratio(X)	0.00	0.92	0.93	0.00	1.04	0.28	0.85	0.87	0.00	0.84	0.51	0.00
Avail Cap(c_a), veh/h	0.00	317	318	0.00	633	376	523	3441	0.00	401	3307	0.00
HCM Platoon Ratio	1.00	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	88.1	88.2	0.0	78.0	58.9	23.3	24.0	0.0	51.6	17.3	0.0
Incr Delay (d2), s/veh	0.0	31.0	32.4	0.0	45.8	0.3	7.2	3.2	0.0	6.1	0.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	18.1	18.3	0.0	20.7	9.8	8.9	41.7	0.0	5.2	15.4	0.0
LnGrp Delay(d),s/veh	0.0	119.0	120.5	0.0	123.8	59.2	30.5	27.3	0.0	57.7	17.9	0.0
LnGrp LOS	0.0	F	F	0.0	F	E	C	C	0.0	E	В	0.0
Approach Vol, veh/h		587	_		762			3228			1777	_
Approach Delay, s/veh		119.8			114.9			27.5			20.1	
Approach LOS		F			F			C C		-	20.1 C	
		- 1									C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	18.4	130.6		41.0	13.4	135.6		41.0				
Change Period (Y+Rc), s	7.0	7.0		7.0	7.0	7.0		7.0				
Max Green Setting (Gmax), s	37.0	98.0		34.0	37.0	98.0		34.0				
Max Q Clear Time (g_c+l1), s	10.7	34.8		33.4	6.4	89.3		36.0				
Green Ext Time (p_c), s	0.7	60.8		0.4	0.1	8.6		0.0				
Intersection Summary			The state									
HCM 2010 Ctrl Delay			44.4									
HCM 2010 LOS			D									

	45	K	1	4	×	4	
Phase Number	1	2	4	5	6	8	
Movement	NEL	SWTL	NBT	SWL	NETL	SBT	
Lead/Lag	Lead	Lag		Lead	Lag		
Lead-Lag Optimize	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	None	C-Max	None	
Maximum Split (s)	44	105	41	44	105	41	
Maximum Split (%)	23.2%	55.3%	21.6%	23.2%	55.3%	21.6%	
Minimum Split (s)	12	33	32	12	33	30	
Yellow Time (s)	5	5	4	5	5	4	
All-Red Time (s)	2	2	3	2	2	3	
Minimum Initial (s)	5	7	7	5	7	7	
Vehicle Extension (s)	3	2.5	2.5	2	2.5	2.5	
Minimum Gap (s)	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	
Walk Time (s)		7	5	- 7	7	5	
Flash Dont Walk (s)		19	20		19	18	
Dual Entry	No	Yes	Yes	No	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	55	99	14	55	99	14	
End Time (s)	99	14	55	99	14	55	
Yield/Force Off (s)	92	7	48	92	7	48	
Yield/Force Off 170(s)	92	178	28	92	178	30	
Local Start Time (s)	48	92	7	48	92	7	
Local Yield (s)	85	0	41	85	0	41	
Local Yield 170(s)	85	171	21	85	171	23	
Intersection Summary							
Cycle Length			190				
Control Type	Actu	ated-Coo					
Natural Cycle	10.00		120				
Offset: 7 (4%), Referenced	to phase 2	SWTL ar		L. Start of	Yellow		
Controlled Completions of the Controlled Con	Series Series						
Splits and Phases: 2: Re	d Rd & Sou	ıth Dixie I	Hwy				
₩ _{Ø1}	K	Ø2 (R)					▼ 104
44 s	105 s						41 s
6 05	Α.	Ø6 (R)					- 14
♥ Ø5	105 s	06 (R)		-			▼ Ø8

Movement				-	*	M	*	×	*	*	-	V
	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWF
Lane Configurations		1			44	7	7	ተ ተጉ		1/4	<u></u> ተተጉ	
Traffic Volume (veh/h)	0	556	70	0	582	323	198	2072	128	160	2246	57
Future Volume (veh/h)	0	556	70	0	582	323	198	2072	128	160	2246	57
Number	7	4	14	3	8	18	1	6	16	5	2	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.99	1.00		1.00	1.00	33	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	0	1881	1900	0	1881	1881	1881	1881	1900	1881	1881	1900
Adj Flow Rate, veh/h	0	573	72	0	600	333	204	2136	0	165	2315	(
Adj No. of Lanes	0	2	0	0	2	1	1	3	0	1	3	(
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	0	1	1	0	1	1	1	1	1	1	1	
Cap, veh/h	0	570	71	0	640	400	224	3424	0	198	3271	(
Arrive On Green	0.00	0.24	0.24	0.00	0.18	0.18	0.07	0.67	0.00	0.04	0.64	0.00
Sat Flow, veh/h	0	3278	399	0	3668	1578	1792	5305	0	1792	5305	(
Grp Volume(v), veh/h	0	321	324	0	600	333	204	2136	0	165	2315	(
Grp Sat Flow(s),veh/h/ln	0	1787	1796	0	1787	1578	1792	1712	0	1792	1712	Č
Q Serve(g_s), s	0.0	34.0	34.0	0.0	31.5	34.0	11.6	45.1	0.0	6.2	56.6	0.0
Cycle Q Clear(g_c), s	0.0	34.0	34.0	0.0	31.5	34.0	11.6	45.1	0.0	6.2	56.6	0.0
Prop In Lane	0.00	04.0	0.22	0.00	01.0	1.00	1.00	40.1	0.00	1.00	00.0	0.00
Lane Grp Cap(c), veh/h	0.00	320	321	0.00	640	400	224	3424	0.00	198	3271	0.00
V/C Ratio(X)	0.00	1.00	1.01	0.00	0.94	0.83	0.91	0.62	0.00	0.83	0.71	0.00
Avail Cap(c_a), veh/h	0.00	320	321	0.00	640	400	299	3424	0.00	327	3271	0.00
HCM Platoon Ratio	1.00	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	72.4	72.4	0.0	77.0	67.3	51.4	18.1	0.0	29.1	22.8	0.0
Incr Delay (d2), s/veh	0.0	51.2	52.4	0.0	21.5	13.6	25.5	0.9	0.0	3.9	1.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	21.3	21.5	0.0	17.5	32.1	12.2	21.4	0.0	5.8	27.0	0.0
LnGrp Delay(d),s/veh	0.0	123.6	124.8	0.0	98.5	80.9	76.9	18.9	0.0	33.0	24.1	0.0
LnGrp LOS	0.0	123.0 F	F	0.0	90.5 F	60.9 F	70.5 E	В	0.0	C	C C	0,0
Approach Vol, veh/h		645			933	-	_	2340	_		2480	2 223
N. P. L. C. SPOLICE SCHOOL AND ALL S		124.2			92.2			24.0				
Approach LOS		124.Z		-	92.Z			24.0 C			24.7 C	
Approach LOS		F			Г			C			C	
Timer	1	2	3	4_	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	21.0	128.0		41.0	15.3	133.7		41.0				
Change Period (Y+Rc), s	7.0	7.0		7.0	7.0	7.0		7.0				
Max Green Setting (Gmax), s	22.0	113.0		34.0	22.0	113.0		34.0				
Max Q Clear Time (g_c+l1), s	13.6	58.6		36.0	8.2	47.1		36.0				
Green Ext Time (p_c), s	0.3	51.4		0.0	0.2	61.6		0.0				
Intersection Summary												5
HCM 2010 Ctrl Delay			44.3									
HCM 2010 LOS			D									
Notes												

	45	K	1	4	×	4	
Phase Number	1	2	4	5	6	8	
Movement	NEL	SWTL	NBT	SWL	NETL	SBT	
Lead/Lag	Lead	Lag		Lead	Lag		
Lead-Lag Optimize	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	None	C-Max	None	
Maximum Split (s)	29	120	41	29	120	41	
Maximum Split (%)	15.3%	63.2%	21.6%	15.3%	63.2%	21.6%	
Minimum Split (s)	12	33	32	12	33	30	
Yellow Time (s)	5	5	4	5	5	4	
All-Red Time (s)	2	2	3	2	2	3	
Minimum Initial (s)	5	7	7	5	7	7	
Vehicle Extension (s)	3	2.5	2.5	2	2.5	2.5	
Minimum Gap (s)	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	
Walk Time (s)		7	5		7	5	
Flash Dont Walk (s)		19	20		19	18	
Dual Entry	No	Yes	Yes	No	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	188	27	147	188	27	147	
End Time (s)	27	147	188	27	147	188	
Yield/Force Off (s)	20	140	181	20	140	181	
Yield/Force Off 170(s)	20	121	161	20	121	163	
Local Start Time (s)	48	77	7	48	77	7	
Local Yield (s)	70	0	41	70	0	41	
Local Yield 170(s)	70	171	21	70	171	23	
Intersection Summary							
Cycle Length			190				
Control Type	Actu	ated-Coo					
Natural Cycle			90				
Offset: 140 (74%), Reference	ced to phas	e 2:SWT	L and 6:N	IETL, Sta	rt of Yello	W	
	d Rd & Sou	th Dixie I	Hwy				
₩ ₀₁	an (n)						
7 Ø1 7 1 29 s 120 s	Ø2 (R)		-	-			04
/							41 s
¥ Ø5 🗡	Ø6 (R)						•
29 s 120 s							41s

Intersection							100					
Intersection Delay, s/veh	9.2											
Intersection LOS	А											
Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEU	NEL	NET	NEF
Lane Configurations			4			- Annual -	4				4	
Traffic Vol, veh/h	0	7	80	65	0	4	15	3	0	82	110	7
Future Vol, veh/h	0	7	80	65	0	4	15	3	0	82	110	7
Peak Hour Factor	0.92	0.80	0.80	0.80	0.92	0.80	0.80	0.80	0.92	0.80	0.80	0.80
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	9	100	81	0	5	19	4	0	103	138	9
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	C
Approach	357	SE				NW				NE		
Opposing Approach		NW				SE				SW		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SW				NE				SE		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NE				SW				NW		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		9				8.2				9.8		
HCM LOS		Α				Α				Α		
Lane		NELn1	NWLn1	SELn1	SWLn1							
Vol Left, %		41%	18%	5%	4%							
Vol Thru, %		55%	68%	53%	93%							
Vol Right, %		4%	14%	43%	3%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		199	22	152	68							
LT Vol		82	4	7	3							
Through Vol		110	15	80	63							
RT Vol		7	3	65	2							
Lane Flow Rate		249	28	190	85							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.318	0.038	0.238	0.112							
Departure Headway (Hd)		4.603	4.911	4.509	4.724							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Cap		781	727	796	757							
Service Time		2.638	2.958	2.543	2.766							
HCM Lane V/C Ratio		0.319	0.039	0.239	0.112							
		9.8	8.2	9	8.4							
HCM Control Delay												
		Α	Α	Α	Α							
HCM Control Delay												

PROPERTY OF THE	100		

Intersection Delay, s/veh

Movement	SWU	SWL	SWT	SWR	
Lane Configurations			4		
Traffic Vol, veh/h	0	3	63	2	
Future Vol, veh/h	0	3	63	2	
Peak Hour Factor	0.92	0.80	0.80	0.80	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	4	79	3	
Number of Lanes	0	0	1	0	
Approach		SW			
Opposing Approach		NE			Ī
Opposing Lanes		1			
Conflicting Approach Left		NW			
Conflicting Lanes Left		1			
Conflicting Approach Right		SE			
Conflicting Lanes Right		1			
HCM Control Delay		8.4			
HCM LOS		Α			

Intersection		
Intersection Delay, s/veh	8.9	
Intersection Delay, s/veh Intersection LOS	Α	

Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEU	NEL	NET	NER
Lane Configurations			4	^			4				4	
Traffic Vol, veh/h	0	27	63	54	0	10	67	4	0	77	72	24
Future Vol, veh/h	0	27	63	54	0	10	67	4	0	77	72	24
Peak Hour Factor	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1
Mvmt Flow	0	30	69	59	0	11	74	4	0	85	79	26
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		SE			778	NW				NE		
Opposing Approach		NW				SE	1			SW		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SW				NE				SE		
Conflicting Lanes Left		1				1				1		-
Conflicting Approach Right		NE				SW				NW		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		8.8				8.6				9.2		
HCM LOS		Α				A				Α		

Lane	NELn1	NWLn1	SELn1	SWLn1	Z
Vol Left, %	45%	12%	19%	8%	
Vol Thru, %	42%	83%	44%	72%	
Vol Right, %	14%	5%	38%	20%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	173	81	144	118	
LT Vol	77	10	27	9	
Through Vol	72	67	63	85	
RT Vol	24	4	54	24	
Lane Flow Rate	190	89	158	130	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.246	0.12	0.202	0.167	
Departure Headway (Hd)	4.662	4.855	4.591	4.624	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	768	735	779	773	
Service Time	2.704	2.906	2.635	2.669	
HCM Lane V/C Ratio	0.247	0.121	0.203	0.168	
HCM Control Delay	9.2	8.6	8.8	8.6	
HCM Lane LOS	A	A	A	A	
HCM 95th-tile Q	1	0.4	0.8	0.6	

-	te	200	^	_	м	0	

Intersection Delay, s/veh

Intersection LOS				
Movement	SWU	SWL	SWT	SWR
Lane Configurations			4	
Traffic Vol, veh/h	0	9	85	24
Future Vol, veh/h	0	9	85	24
Peak Hour Factor	0.92	0.91	0.91	0.91
Heavy Vehicles, %	1	1	1	1
Mvmt Flow	0	10	93	26
Number of Lanes	0	0	1	0
Approach		SW		
Opposing Approach		NE		
Opposing Lanes		1		
Conflicting Approach Left		NW		
Conflicting Lanes Left		1		
Conflicting Approach Right		SE		
Conflicting Lanes Right		1		
HCM Control Delay		8.6		
HCM LOS		Α		

Int Delay, s/veh	5							
	v		MARK					
Movement	100000	NBT	NBR	SBL	SBT	SWL	SWR	
Lane Configurations		1		"	^	Ŋ	7"	
Traffic Vol, veh/h		477	159	149	683	82	65	
Future Vol, veh/h		477	159	149	683	82	65	
Conflicting Peds, #/hr		0	4	4	0	1	0	
Sign Control		Free	Free	Free	Free	Stop	Stop	
RT Channelized		-	None		None	-	Stop	
Storage Length		-	-	92	+	0	50	
Veh in Median Storage, #		0	-	-	0	0	-	
Grade, %		0	-	-	0	0	+	
Peak Hour Factor		95	95	95	95	95	95	
Heavy Vehicles, %		2	2	2	2	2	2	
Mvmt Flow		502	167	157	719	86	68	
Major/Minor	M	ajor1		Major2		Minor1		
Conflicting Flow All		0	0	673	0	1264	339	
Stage 1		-		-	-	590	300	
Stage 2		-		_	4	674	_	
Critical Hdwy		-	-	4.14		6.84	6.94	
Critical Hdwy Stg 1		-	_	3.17	_	5.84	0.04	
Critical Hdwy Stg 2					- 1	5.84		
Follow-up Hdwy				2.22		3.52	3.32	
Pot Cap-1 Maneuver				914		161	657	
Stage 1				314		517	- 007	
Stage 2						468		
Platoon blocked, %						400	•	
Mov Cap-1 Maneuver				914		133	654	
			100	914			054	
Mov Cap-2 Maneuver		-	-	•	-	133	-	
Stage 1		-		*	•	515	-	
Stage 2		÷	-			387	-	
Approach		NB		SB		SW		
HCM Control Delay, s		0		1.7		45.1		
HCM LOS						E		
Minor Lang/Major Mumt	NDT	NIDID	CDI	SBTSWLn1S	10/1 20			
Minor Lane/Major Mvmt Capacity (veh/h)	NBT I	NBR -	SBL 914	- 133	654			
HCM Lane V/C Ratio			0.172	- 0.649				
		-						
HCM Long LOS	•	-	9.8	- 72	11.1			
HCM Lane LOS		-	A	- F	В			
HCM 95th %tile Q(veh)	-	-	0.6	- 3.5	0.3			

Intersection							
Int Delay, s/veh	7.3						
Movement	NBT	NBR	SBL	SBT	SWL	SWR	
Lane Configurations	ሶ ጮ		19	^	N,	7	
Traffic Vol, veh/h	510	103	103	759	111	97	
Future Vol, veh/h	510	103	103	759	111	97	
Conflicting Peds, #/hr	0	18	18	0	5	6	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None		None		Stop	
Storage Length	-	-	92	-	0	50	
Veh in Median Storage, #	0	-		0	0		
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	1	1	1	1	1	1	
Mvmt Flow	543	110	110	807	118	103	
Major/Minor	Major1	-	Major2		Minor1		
Conflicting Flow All	0	0	670	0	1243	250	
				0		350	
Stage 1					615		
Stage 2	-		4 40	-	628	0.00	
Critical Hdwy Critical Hdwy Stg 1			4.12		6.82	6.92	
		-	-		5.82	-	
Critical Hdwy Stg 2		-	0.04	-	5.82	2.04	
Follow-up Hdwy		-	2.21 923	_	3.51	3.31	
Pot Cap-1 Maneuver			923	-	168	649	
Stage 1					505	-	
Stage 2	•			-	497		
Platoon blocked, %	-	-	918	-	145	004	
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	•	-		•	145	634	
Stage 1	-	-	- 1	-	496 435	-	
Stage 2			·	mi.	435		
Approach	NB		SB		SW		
HCM Control Delay, s	0		1.1		54.7		
HCM LOS					F		
MASS 1 10 4 - 2 1 4 - 2 1	NOT HED	ODL	ODTOWN	NA// - 0			
Minor Lane/Major Mvmt	NBT NBR	SBL	SBTSWLn1S				
Capacity (veh/h)		918	- 145	634			
HCM Lane V/C Ratio		0.119		0.163			
HCM Control Delay (s)		9.5	- 92.2	11.8			
HCM Lane LOS		A	- F	В			
HCM 95th %tile Q(veh)	* * *	0.4	- 5.2	0.6			

	1	-	-	1	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	19	^	1>		7	7"		
Traffic Volume (vph)	97	437	293	26	38	110		
Future Volume (vph)	97	437	293	26	38	110		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.0	5.0	5.0		5.0	5.0		
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00		
Frpb, ped/bikes	1.00	1.00	1.00		1.00	0.99		
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00		
Frt	1.00	1.00	0.99		1.00	0.85		
Fit Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1751	1845	1821		1752	1559		
Flt Permitted	0.47	1.00	1.00		0.95	1.00		
	865	1845	1821		1752	1559		
Satd. Flow (perm)				0.00				
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93		
Adj. Flow (vph)	104	470	315	28	41	118		
RTOR Reduction (vph)	0	0	4	0	0	81		
Lane Group Flow (vph)	104	470	339	0	41	37		
Confl. Peds. (#/hr)	3			3	4	2		
Heavy Vehicles (%)	3%	3%	3%	3%	3%	3%		
Turn Type	pm+pt	NA	NA		Prot	custom		
Protected Phases	1	6	2		8	8		
Permitted Phases	6					1		
Actuated Green, G (s)	55.0	55.0	45.0		20.0	27.0		
Effective Green, g (s)	55.0	55.0	45.0		20.0	27.0		
Actuated g/C Ratio	0.65	0.65	0.53		0.24	0.32		
Clearance Time (s)	3.0	5.0	5.0		5.0	5.0		
Lane Grp Cap (vph)	632	1193	964		412	586		
v/s Ratio Prot	0.01	c0.25	0.19		c0.02	0.02		
v/s Ratio Perm	0.09	60.20	0.19		60.02	0.02		
v/c Ratio	0.16	0.39	0.35		0.10	0.06		
	6.0	7.1	11.6		25.4	20.2		
Uniform Delay, d1								
Progression Factor	1.00	1.00	1.00		1.00	1.00		
Incremental Delay, d2	0.6	1.0	1.0		0.5	0.2		
Delay (s)	6.5	8.1	12.6		25.9	20.4		
Level of Service	Α	A	В		C	С		
Approach Delay (s)		7.8	12.6		21.8			
Approach LOS		Α	В		С			
Intersection Summary								
HCM 2000 Control Delay			11.4	H	CM 2000	Level of Service	е В	
HCM 2000 Volume to Capa	acity ratio		0.33					
Actuated Cycle Length (s)			85.0			st time (s)	13.0	
Intersection Capacity Utiliz	ation		39.9%	IC	U Level	of Service	A	
Analysis Period (min)			15					
Critical Lane Group								

	4	K	1	4	×	4	
Phase Number	1	2	4	5	6	8	
Movement	NEL	SWTL	NBT	SWL	NETL	SBT	
Lead/Lag	Lead	Lag		Lead	Lag	200	
Lead-Lag Optimize	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	None	C-Max	None	
Maximum Split (s)	44	105	41	44	105	41	
Maximum Split (%)	23.2%	55.3%	21.6%	23.2%	55.3%	21.6%	
Minimum Split (s)	12	33	32	12	33	30	
Yellow Time (s)	5	5	4	5	5	4	
All-Red Time (s)	2	2	3	2	2	3	
Minimum Initial (s)	5	7	7	5	7	7	
Vehicle Extension (s)	3	2.5	2.5	2	2.5	2.5	
Minimum Gap (s)	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	
Walk Time (s)		7	5	- 5	7	5	
Flash Dont Walk (s)		19	20		19	18	
Dual Entry	No	Yes	Yes	No	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	55	99	14	55	99	14	
End Time (s)	99	14	55	99	14	55	
Yield/Force Off (s)	92	7	48	92	7	48	
Yield/Force Off 170(s)	92	178	28	92	178	30	
Local Start Time (s)	48	92	7	48	92	7	
Local Yield (s)	85	0	41	85	0	41	
Local Yield 170(s)	85	171	21	85	171	23	
Intersection Summary							
Cycle Length			190				
Control Type	Actua	ated-Coo					
Natural Cycle			120				
Offset: 7 (4%), Referenced	to phase 2:	SWTL ar	d 6:NETI	_, Start of	Yellow		
Splits and Phases: 2: Re	d Rd & Sou	th Dixie I	Hwy				
1 01	*	02 (R)					• Îø4
44 s	105 s	22 (13)				1000	41 s
√ Ø5	A.	76 (R)					
							♥ Ø8

	1	4	1	4		
Phase Number	1	2	6	8		
Movement	EBL	WBT	EBTL	SBL		
Lead/Lag	Lead	Lag				
Lead-Lag Optimize	Yes	Yes				
Recall Mode	Max	Max	Max	Max		
Maximum Split (s)	10	50	60	25		
Maximum Split (%)	11.8%	58.8%	70.6%	29.4%		
Minimum Split (s)	9.5	23	23	23		
Yellow Time (s)	3	4	4	4		
All-Red Time (s)	0	1	1	1		
Minimum Initial (s)	5	15	15	7		
Vehicle Extension (s)	2	1	1	2.5		
Minimum Gap (s)	3	3	3	3		
Time Before Reduce (s)	0	0	0	0		
Time To Reduce (s)	0	0	0	0		
Walk Time (s)						
Flash Dont Walk (s)						
Dual Entry	No	Yes	Yes	Yes		
Inhibit Max	Yes	Yes	Yes	Yes		
Start Time (s)	22.5	32.5	22.5	82.5		
End Time (s)	32.5	82.5	82.5	22.5		
Yield/Force Off (s)	29.5	77.5	77.5	17.5		
Yield/Force Off 170(s)	29.5	77.5	77.5	17.5		
Local Start Time (s)	30	40	30	5		
Local Yield (s)	37	0	0	25		
Local Yield 170(s)	37	0	0	25		
Intersection Summary						
Cycle Length			85			
Control Type		F	Pretimed			
Natural Cycle			60			
Offset: 77.5 (91%), Referen	nced to pha	se 2:WB	and 6:E	BTL, Start	of Yellow	
Splits and Phases: 5: SV	V 72nd St 8	Yumuri !	St			
<i>**</i>	7.	Tuniun				
Ø1 Ø2 (F	3)				<u> </u>	
10 s 50 s						.1
→Ø6 (R)						1 08
60 8		-				75.0

d pr	4	1	1	1	- T	1	1	
2	nase Number	3	4	5	6	7	8	
SBTL	ovement N	EBL	WBTL	SBL	NBTL	WBL	EBTL	
Lag I	ead/Lag Le	Lead	Lag	Lead	Lag	Lead	Lag	
Yes	ead-Lag Optimize Y	Yes	Yes	Yes	Yes	Yes	Yes	
Max C-	ecall Mode No	C-Max	None	None	Max	None	None	
96	aximum Split (s)	18	64	12	96	18	64	
0.5%	aximum Split (%) 6.3	9.5%	33.7%	6.3%	50.5%	9.5%	33.7%	
28	inimum Split (s)	11	29	11	28	11	29	
4	ellow Time (s)	4	4	4	4	4	4	
2	I-Red Time (s)	2	2	2	2	2	2	
7	inimum Initial (s)	5	7	5	7	5	7	
1	ehicle Extension (s)	2	2.5	2	1	2	2.5	
3	inimum Gap (s)	3	3	3	3	3	3	
0	me Before Reduce (s)	0	0	0	0	0	0	
0	me To Reduce (s)	0	0	0	0	0	0	
7	alk Time (s)		7	187	7		7	
15	ash Dont Walk (s)		16		15		16	The second second
Yes	ual Entry	No	Yes	No	Yes	No	Yes	
Yes	hibit Max Y	Yes	Yes	Yes	Yes	Yes	Yes	
160	art Time (s) 1	66	84	148	160	66	84	
66	nd Time (s) 1	84	148	160	66	84	148	
60	eld/Force Off (s) 1	78	142	154	60	78	142	
45	eld/Force Off 170(s) 1	78	126	154	45	78	126	
82	ocal Start Time (s)	178	6	70	82	178	6	
172	ocal Yield (s)	0	64	76	172	0	64	
157	ocal Yield 170(s)	0	48	76	157	0	48	
	tersection Summary							
	cle Length	190						
d-Coordin	Strict and the strict of the s							
	atural Cycle	80						
EBL, Start	ffset: 78 (41%), Referenced to ph	tart of Ye	ellow					
ed Rd	olits and Phases: 6: SW 72nd				0.41			
	4° 46				1/4		+	
	1 Ø1 ♥ Ø2				_	23 (R)	₩ Ø4	
-	8 96 S				18 8	6	4 5	
	05 06				6	27	108	
	2 s 96 s					18 s	18 s 6	

	1	-	-	*	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	19	1	1>		19	7"	
Traffic Volume (vph)	132	409	341	42	175	178	
Future Volume (vph)	132	409	341	42	175	178	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0	5.0	5.0	1.5.5.5.	5.0	5.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.99		1.00	0.85	
Fit Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1787	1881	1849		1787	1590	
FIt Permitted	0.41	1.00	1.00		0.95	1.00	
Satd. Flow (perm)	765	1881	1849		1787	1590	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	
Adj. Flow (vph)	145	449	375	46	192	196	
RTOR Reduction (vph)	0	0	5	0	0	134	
Lane Group Flow (vph)	145	449	416	0	192	62	
	145	449	410	1	10	1	
Confl. Peds. (#/hr)		A I A	NIA				
Turn Type	pm+pt	NA	NA		Prot	custom	
Protected Phases	1	6	2		8	8	
Permitted Phases	6		15.0		00.0	1	
Actuated Green, G (s)	55.0	55.0	45.0		20.0	27.0	
Effective Green, g (s)	55.0	55.0	45.0		20.0	27.0	
Actuated g/C Ratio	0.65	0.65	0.53		0.24	0.32	
Clearance Time (s)	3.0	5.0	5.0		5.0	5.0	
Lane Grp Cap (vph)	579	1217	978		420	598	
v/s Ratio Prot	0.02	c0.24	c0.22		c0.11	0.02	
uls Ratio Perm	0.14					0.01	
v/c Ratio	0.25	0.37	0.43		0.46	0.10	
Jniform Delay, d1	6.5	7.0	12.1		27.8	20.5	
Progression Factor	1.00	1.00	1.00		1.00	1.00	
ncremental Delay, d2	1.0	0.9	1.4		3.6	0.3	
Delay (s)	7.5	7.8	13.5		31.4	20.8	
_evel of Service	A	Α	В		C	C	
Approach Delay (s)		7.7	13.5		26.1		
Approach LOS		Α	В		C		
ntersection Summary					11.31	عربوا للأراجية	
HCM 2000 Control Delay	A COLUMN		14.5	H	CM 2000	Level of Service	ре В
HCM 2000 Volume to Capa	acity ratio		0.43				
Actuated Cycle Length (s)	A CALL SOLD IN		85.0	St	ım of los	t time (s)	13.0
Intersection Capacity Utiliza	ation		49.2%			of Service	A
Analysis Period (min)	310		15	- "			
c Critical Lane Group							

	24	4	1	4	
Phase Number	1	2	6	8	
Movement	EBL	WBT	EBTL	SBL	
Lead/Lag	Lead	Lag			
Lead-Lag Optimize	Yes	Yes			
Recall Mode	Max	Max	Max	Max	
Maximum Split (s)	10	50	60	25	
Maximum Split (%)	11.8%	58.8%	70.6%	29.4%	
Minimum Split (s)	9.5	23	23	23	
Yellow Time (s)	3	4	4	4	
All-Red Time (s)	0	1	1	1	
Minimum Initial (s)	5	15	15	7	
Vehicle Extension (s)	2	1	1	2.5	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)			7	-	
Flash Dont Walk (s)					
Dual Entry	No	Yes	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	22.5	32.5	22.5	82.5	
End Time (s)	32.5	82.5	82.5	22.5	
Yield/Force Off (s)	29.5	77.5	77.5	17.5	
Yield/Force Off 170(s)	29.5	77.5	77.5	17.5	
Local Start Time (s)	30	40	30	5	
Local Yield (s)	37	0	0	25	
Local Yield 170(s)	37	0	0	25	
Intersection Summary					
Cycle Length			85		
Control Type		F	retimed		
Natural Cycle			60		
Offset: 77.5 (91%), Referer	ced to pha	se 2:WB1	-5/5/	BTL, Start	of Yellow
(3.114)					PERSON COLLECTION
Splits and Phases: 5: SV	V 72nd St 8	Yumuri S	St		
*					
Ø1 Ø2 (F	2)				
10 s 50 s	The same of				· ·
→26 (R)					▼ 28
60 s					25 s

	1	→	*	-	+	1	1	1	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	19	1>		J.	4	7	N,	1	7"	1/1	^	7"
Traffic Volume (vph)	143	268	35	116	200	47	96	502	118	102	348	105
Future Volume (vph)	143	268	35	116	200	47	96	502	118	102	348	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.98		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1767	1822		1770	1863	1559	1751	1863	1542	1770	1863	1533
Flt Permitted	0.38	1.00		0.17	1.00	1.00	0.45	1.00	1.00	0.32	1.00	1.00
Satd. Flow (perm)	714	1822		312	1863	1559	832	1863	1542	595	1863	1533
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	157	295	38	127	220	52	105	552	130	112	382	115
RTOR Reduction (vph)	0	3	0	0	0	37	0	0	40	0	0	40
Lane Group Flow (vph)	157	330	0	127	220	15	105	552	90	112	382	75
Confl. Peds. (#/hr)	3		5	5		3	16		8	8		16
Turn Type	pm+pt	NA		pm+pt	NA	custom	pm+pt	NA	custom	pm+pt	NA	custom
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		14	6		76	2		32
Actuated Green, G (s)	51.8	39.9		51.2	39.6	54.7	114.2	105.1	122.7	114.8	105.4	123.3
Effective Green, g (s)	51.8	39.9		51.2	39.6	54.7	114.2	105.1	122.7	114.8	105.4	123.3
Actuated g/C Ratio	0.27	0.21		0.27	0.21	0.29	0.60	0.55	0.65	0.60	0.55	0.65
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	1000000
Vehicle Extension (s)	2.0	2.5		2.0	2.5		2.0	1.0		2.0	1.0	
Lane Grp Cap (vph)	260	382		173	388	448	544	1030	995	417	1033	994
v/s Ratio Prot	0.04	c0.18		c0.04	0.12		0.01	c0.30	100	c0.01	0.21	
v/s Ratio Perm	0.13	35.57.115		0.15	17117	0.01	0.11		0.06	0.15		0.05
v/c Ratio	0.60	0.86		0.73	0.57	0.03	0.19	0.54	0.09	0.27	0.37	0.08
Uniform Delay, d1	57.4	72.4		56.9	67.5	48.6	16.9	27.0	12.7	19.0	23.7	12.3
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.63	1.24	0.12
Incremental Delay, d2	3.3	17.8		13.0	1.5	0.0	0.1	2.0	0.0	0.1	0.5	0.1
Delay (s)	60.7	90.2		69.9	69.0	48.7	16.9	29.0	12.7	30.9	30.0	1.5
Level of Service	Е	F		Е	Е	D	В	C	В	С	С	A
Approach Delay (s)		80.7			66.7			24.7		2012	24.8	
Approach LOS		F			Е			С			С	
Intersection Summary					ein.	A D			3333			
HCM 2000 Control Delay			44.1	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.61									
Actuated Cycle Length (s)			190.0			st time (s)			24.0			
Intersection Capacity Utiliz	ation		77.7%	IC	U Level	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

	1	1	2	*	1	4	10	1	
Phase Number	1	2	3	4	5	6	7	8	
Movement	NBL	SBTL	EBL	WBTL	SBL	NBTL	WBL	EBTL	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	C-Max	None	None	Max	None	None	
Maximum Split (s)	12	96	18	64	12	96	18	64	
Maximum Split (%)	6.3%	50.5%	9.5%	33.7%	6.3%	50.5%	9.5%	33.7%	
Minimum Split (s)	11	28	11	29	11	28	11	29	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	5	7	5	7	5	7	5	7	
Vehicle Extension (s)	2	1	2	2.5	2	1	2	2.5	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)	-	7		7		7		7	
Flash Dont Walk (s)		15		16		15		16	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
nhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	148	160	66	84	148	160	66	84	
End Time (s)	160	66	84	148	160	66	84	148	
Yield/Force Off (s)	154	60	78	142	154	60	78	142	
Yield/Force Off 170(s)	154	45	78	126	154	45	78	126	
_ocal Start Time (s)	70	82	178	6	70	82	178	6	
ocal Yield (s)	76	172	0	64	76	172	0	64	
_ocal Yield 170(s)	76	157	0	48	76	157	0	48	
ntersection Summary		C) R							
Cycle Length			190						
Control Type	Actu	ated-Coo	rdinated						
			80						
	ed to phase	3:EBL. 5	Start of Ye	ellow					
Natural Cycle Offset: 78 (41%), Reference				ellow					
Splits and Phases: 6: SW	72nd St 8	Red Rd				1 14		-0	
1 Ø1 ₩ Ø2						200	Ø . (R)	Ø4	
12 s 96 s						18 s	6	4 s	
						1		A	
Ø5 Ø6		_				V (')		128	

	1	-	*	-	-	1	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	B		1	1	7	M	1	7"	7	^	7"
Traffic Volume (vph)	115	241	53	190	265	24	80	339	146	78	516	221
Future Volume (vph)	115	241	53	190	265	24	80	339	146	78	516	221
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.98		1.00	1.00	0.98	1.00	1.00	0.94	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00
Frt	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1785	1789		1787	1881	1569	1787	1881	1510	1710	1881	1536
Flt Permitted	0.25	1.00		0.18	1.00	1.00	0.35	1.00	1.00	0.49	1.00	1.00
Satd. Flow (perm)	472	1789		347	1881	1569	667	1881	1510	882	1881	1536
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	117	246	54	194	270	24	82	346	149	80	527	226
RTOR Reduction (vph)	0	5	0	0	0	18	0	0	49	0	0	65
Lane Group Flow (vph)	117	295	0	194	270	6	82	346	100	80	527	161
Confl. Peds. (#/hr)	6		26	26		6	27		49	49		27
Turn Type	pm+pt	NA		pm+pt	NA	custom	pm+pt	NA	custom	pm+pt	NA	custom
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		14	6		76	2		32
Actuated Green, G (s)	47.3	36.4		47.5	36.5	50.3	118.7	110.9	127.9	118.5	110.8	127.7
Effective Green, g (s)	47.3	36.4		47.5	36.5	50.3	118.7	110.9	127.9	118.5	110.8	127.7
Actuated g/C Ratio	0.25	0.19		0.25	0.19	0.26	0.62	0.58	0.67	0.62	0.58	0.67
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	2.0	2.5		2.0	2.5		2.0	1.0		2.0	1.0	
Lane Grp Cap (vph)	192	342		170	361	415	462	1097	1016	583	1096	1032
v/s Ratio Prot	0.03	0.16		c0.07	0.14		c0.01	0.18		0.01	c0.28	
v/s Ratio Perm	0.12			c0.22		0.00	0.10		0.07	0.08		0.11
v/c Ratio	0.61	0.86		1.14	0.75	0.02	0.18	0.32	0.10	0.14	0.48	0.16
Uniform Delay, d1	58.6	74.4		67.1	72.4	51.6	16.1	20.2	10.9	14.6	22.9	11.4
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.58	1.33	0.56
Incremental Delay, d2	4.6	19.4		112.1	7.8	0.0	0.1	0.8	0.0	0.0	1.0	0.2
Delay (s)	63.2	93.8		179.2	80.2	51.6	16.2	20.9	10.9	23.1	31.4	6.7
Level of Service	E	F		F	F	D	В	C	В	C	C	Α
Approach Delay (s)		85.2			118.2			17.7			23.9	
Approach LOS		F			F			В			С	
Intersection Summary							1000					
HCM 2000 Control Delay			53.3	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.66									
Actuated Cycle Length (s)			190.0			st time (s)			24.0			
Intersection Capacity Utiliz	ation		81.3%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	4	1	1	*	1	1	1	4	
Phase Number	1	2	3	4	5	6	7	8	
Movement	NBL	SBTL	EBL	WBTL	SBL	NBTL	WBL	EBTL	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	C-Max	None	None	Max	None	None	
Maximum Split (s)	21	93	17	59	21	93	17	59	
Maximum Split (%)	11.1%	48.9%	8.9%	31.1%	11.1%	48.9%	8.9%	31.1%	
Minimum Split (s)	11	28	11	29	11	28	11	29	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	5	7	5	7	5	7	5	7	
Vehicle Extension (s)	2	1	2	2.5	2	1	2	2.5	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		7		7		7		7	
Flash Dont Walk (s)		15		16		15		16	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	85	106	9	26	85	106	9	26	
End Time (s)	106	9	26	85	106	9	26	85	
Yield/Force Off (s)	100	3	20	79	100	3	20	79	
Yield/Force Off 170(s)	100	178	20	63	100	178	20	63	
Local Start Time (s)	65	86	179	6	65	86	179	6	
Local Yield (s)	80	173	0	59	80	173	0	59	
Local Yield 170(s)	80	158	0	43	80	158	0	43	
Intersection Summary							2		
Cycle Length			190						
Control Type	Actu	ated-Coo	rdinated						
Natural Cycle			80						
Offset: 20 (11%), Reference	100		Start of Ye	ellow					
	/ 72nd St &	Red Rd					JA	1 44	
01 02							Ø (F		4
21s 93s					00	1	7 s	59 s	
\A							-		

Future with Project Conditions

Intersection Int Delay, s/veh 58.	6								
	The state of the s								
Movement	NWL	NWR		NET	NER	SWL	SWT		
Lane Configurations	M			ተተ _ጉ		7	^^^		
Traffic Vol, veh/h	2	91		2896	43	147	1765		
Future Vol, veh/h	2	91		2896	43	147	1765		
Conflicting Peds, #/hr	0	0		0	4	4	0		
Sign Control	Stop	Stop		Free	Free	Free	Free		
RT Channelized	-	None			None		None		
Storage Length	0	-		-		80	-		
Veh in Median Storage, #	0	1		0			0		
Grade, %	0	-		0		-	0		
Peak Hour Factor	95	95		95	95	95	95		
Heavy Vehicles, %	2	2		2	2	2	2		
Mymt Flow	2	96		3048	45	155	1858		
WINIT ION		00		0010	10	100	1000		
Major/Minor	Minor1	- Table 1		Major1	100	Major2	1000		
Conflicting Flow All	4128	1551		0	0	3098	0		
Stage 1	3075			-	-	-	-		
Stage 2	1053	-		-	-	-			
Critical Hdwy	5.74	7.14			-	5.34	-		
Critical Hdwy Stg 1	6.64	-		-	-	-	-		
Critical Hdwy Stg 2	6.04	-		-	-	- 4			
Follow-up Hdwy	3.82	3.92		-	-	3.12			
Pot Cap-1 Maneuver	6	~ 88				~ 34	2		
Stage 1	11	-				-			
Stage 2	267			7					
Platoon blocked, %	201				-				
Mov Cap-1 Maneuver	0	~ 88				~ 34			
Mov Cap-2 Maneuver	0	-				-			
Stage 1	11					-			
	0					-	-		
Stage 2	U	<u>-</u>							
Approach	NW			NE		SW			
HCM Control Delay, s	216.5			0		141.1			
HCM LOS	F								
Minor Lane/Major Mvmt	NET	NERNWLn1	SWL	SWT	-	43000			
Capacity (veh/h)	-	- 88	~ 34	-					
HCM Carrier Delay (a)	-	- 1.112							
HCM Control Delay (s)	-	- 216.\$1		-					
HCM Lane LOS	-	- F	F	-					
HCM 95th %tile Q(veh)	-	- 6.7	18.3	-					
Votes		1000			7.75		11,11		
-: Volume exceeds capacity	¢. Do	lay exceeds 30)0e +	: Computation	Not Def	ined *· All	major volu	ıme in platoo	n

Int Delay, s/veh 66	5.2								
Movement	NWL	NWR		NET	NER	SWL	SWT		
Lane Configurations	\y/	144417		ተተ _ጉ	HEIX	19	ተ ተተ		
Traffic Vol, veh/h	33	172		2005	80	49	2419		
Future Vol, veh/h	33	172		2005	80	49	2419		
Conflicting Peds, #/hr	2	1		0	8	8	0		
Sign Control	Stop	Stop		Free	Free	Free	Free		
RT Channelized	Stop	None		riee -	None	riee -	None		
		None				80	None		
Storage Length	0			-	-		-		
Veh in Median Storage, #	0	-		0			0		
Grade, %	0			- 0		-	0		
Peak Hour Factor	98	98		98	98	98	98		
Heavy Vehicles, %	1	1		1	1	1	1		
Mvmt Flow	34	176		2046	82	50	2468		
Major/Minor	Minor1			Major1		Major2			
Conflicting Flow All	3184	1073		0	0	2136	0		
Stage 1	2095	1070		_		2100	_		
Stage 2	1089								
Critical Hdwy	5.72	7.12			- 6	5.32			
CALL PARK AND AND ADDRESS OF A STATE OF THE	6.62	7.12		-		0.02			
Critical Hdwy Stg 1									
Critical Hdwy Stg 2	6.02	2.04		7		0.44	- 1		
Follow-up Hdwy	3.81	3.91			-	3.11	-		
Pot Cap-1 Maneuver	~ 21	187		-		108			
Stage 1	50	-		-	-	-	-		
Stage 2	258					-			
Platoon blocked, %					-		-		
Mov Cap-1 Maneuver	~ 11	185		-	-	108	-		
Mov Cap-2 Maneuver	~ 11			-	-	-	4		
Stage 1	50	- X				-			
Stage 2	138	-					+		
Annroach	NW			NE		SW			
Approach									
	\$ 1521.1			0		1.3			
HCM LOS	F								
Minor Lane/Major Mvmt	NET	NERNWLn1	SWL	SWT					
Capacity (veh/h)	-	- 52	108	-					
HCM Lane V/C Ratio		- 4.023	0.463	-					
HCM Control Delay (s)	-	\$ 1521.1	64.3						
HCM Lane LOS		- F	F						
HCM 95th %tile Q(veh)		- 23.1	2						
		- 20.1							
Notes ~: Volume exceeds capacit		lay exceeds 3	0.0	+: Computation			and the same of	ume in platoon	-

	M	1	7	4	+	لير	*	×	4	6	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWI
Lane Configurations		^ 1>			44	7	N.	ተተ _ጉ		M	ተ ቀጉ	
Traffic Volume (veh/h)	0	507	75	0	653	103	238	2934	113	95	1654	5
Future Volume (veh/h)	0	507	75	0	653	103	238	2934	113	95	1654	5
Number	7	4	14	3	8	18	1	6	16	5	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		1.00	1.00		1.0
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Adj Sat Flow, veh/h/ln	0	1863	1900	0	1863	1863	1863	1863	1900	1863	1863	190
Adj Flow Rate, veh/h	0	517	77	0	666	105	243	2994	0	97	1688	
Adj No. of Lanes	0	2	0	0	2	1	1	3	0	1	3	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.9
Percent Heavy Veh, %	0	2	2	0	2	2	2	2	2	2	2	
Cap, veh/h	0	553	82	0	633	376	283	3440	0	115	3307	
Arrive On Green	0.00	0.06	0.06	0.00	0.18	0.18	0.06	0.68	0.00	0.03	0.65	0.0
Sat Flow, veh/h	0	3181	458	0	3632	1567	1774	5253	0	1774	5253	
Grp Volume(v), veh/h	0	295	299	0	666	105	243	2994	0	97	1688	
Grp Sat Flow(s),veh/h/ln	0	1770	1776	0	1770	1567	1774	1695	0	1774	1695	
Q Serve(g_s), s	0.0	31.6	31.8	0.0	34.0	10.4	8.7	88.0	0.0	4.4	33.0	0.
Cycle Q Clear(g_c), s	0.0	31.6	31.8	0.0	34.0	10.4	8.7	88.0	0.0	4.4	33.0	0.
Prop In Lane	0.00		0.26	0.00		1.00	1.00		0.00	1.00		0.0
Lane Grp Cap(c), veh/h	0	317	318	0	633	376	283	3440	0	115	3307	-
V/C Ratio(X)	0.00	0.93	0.94	0.00	1.05	0.28	0.86	0.87	0.00	0.84	0.51	0.0
Avail Cap(c_a), veh/h	0	317	318	0	633	376	522	3440	0	400	3307	
HCM Platoon Ratio	1.00	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.0
Uniform Delay (d), s/veh	0.0	88.3	88.4	0.0	78.0	58.9	23.6	24.2	0.0	52.1	17.4	0.0
Incr Delay (d2), s/veh	0.0	33.3	34.7	0.0	50.1	0.3	7.4	3.3	0.0	6.1	0.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	18.4	18.7	0.0	21.0	9.8	8.9	42.1	0.0	5.2	15.6	0.0
LnGrp Delay(d),s/veh	0.0	121.6	123.1	0.0	128.1	59.2	31.0	27.5	0.0	58.2	18.0	0.0
LnGrp LOS	7,00	F	F	(5)5)	F	Е	С	С		Е	В	7.00
Approach Vol, veh/h		594			771		-	3237			1785	
Approach Delay, s/veh		122.3			118.7			27.8			20.1	
Approach LOS		F			F			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	18.4	130.6		41.0	13.5	135.5		41.0				
Change Period (Y+Rc), s	7.0	7.0		7.0	7.0	7.0		7.0				
Max Green Setting (Gmax), s	37.0	98.0		34.0	37.0	98.0		34.0				
Max Q Clear Time (g_c+l1), s	10.7	35.0		33.8	6.4	90.0		36.0				
Green Ext Time (p_c), s	0.7	60.6		0.1	0.1	7.9		0.0				
ntersection Summary												. 1
HCM 2010 Ctrl Delay			45.4									
			D	-						_		
HCM 2010 LOS												

	45	K	1	4	×	4	
Phase Number	1	2	4	5	6	8	
Movement	NEL	SWTL	NBT	SWL	NETL	SBT	
Lead/Lag	Lead	Lag		Lead	Lag	1000	
Lead-Lag Optimize	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	None	C-Max	None	
Maximum Split (s)	44	105	41	44	105	41	
Maximum Split (%)	23.2%	55.3%	21.6%	23.2%	55.3%	21.6%	
Minimum Split (s)	12	33	32	12	33	30	
ellow Time (s)	5	5	4	5	5	4	
All-Red Time (s)	2	2	3	2	2	3	
/linimum Initial (s)	5	7	7	5	7	7	
/ehicle Extension (s)	3	2.5	2.5	2	2.5	2.5	
Minimum Gap (s)	3	3	3	3	3	3	
ime Before Reduce (s)	0	0	0	0	0	0	
ime To Reduce (s)	0	0	0	0	0	0	
Valk Time (s)		7	5		7	5	
lash Dont Walk (s)		19	20		19	18	
Oual Entry	No	Yes	Yes	No	Yes	Yes	
nhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	55	99	14	55	99	14	
ind Time (s)	99	14	55	99	14	55	
'ield/Force Off (s)	92	7	48	92	7	48	
'ield/Force Off 170(s)	92	178	28	92	178	30	
ocal Start Time (s)	48	92	7	48	92	7	
ocal Yield (s)	85	0	41	85	0	41	
ocal Yield 170(s)	85	171	21	85	171	23	
ntersection Summary							
Cycle Length			190				
Control Type	Actu	ated-Coo	rdinated				
latural Cycle			120				
Offset: 7 (4%), Referenced	to phase 2	SWTL ar	nd 6:NET	, Start of	Yellow		
	d Rd & Sou	ıth Dixie I	Hwy				<u> </u>
₩ _{Ø1}	K	Ø2 (R)					■
14 s	105 s						41 s
1	-						_ 4 _
▼ Ø5	105 s	Ø6 (R)					▼ Ø8

	M	1	7"	1	1	لر	1	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWI
Lane Configurations		1			个个	7	19	ተተ _ጉ		19	ተ ተጉ	
Traffic Volume (veh/h)	0	507	75	0	653	103	238	2934	113	95	1654	5
Future Volume (veh/h)	0	507	75	0	653	103	238	2934	113	95	1654	5
Number	7	4	14	3	8	18	1	6	16	5	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		1.00	1.00		1.0
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Adj Sat Flow, veh/h/ln	0	1863	1900	0	1863	1863	1863	1863	1900	1863	1863	190
Adj Flow Rate, veh/h	0	517	77	0	666	105	243	2994	0	97	1688	
Adj No. of Lanes	0	2	0	0	2	1	1	3	0	1	3	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.9
Percent Heavy Veh, %	0	2	2	0	2	2	2	2	2	2	2	
Cap, veh/h	0	569	84	0	652	385	282	3410	0	115	3276	
Arrive On Green	0.00	0.06	0.06	0.00	0.18	0.18	0.06	0.67	0.00	0.03	0.64	0.0
Sat Flow, veh/h	0	3181	458	0	3632	1568	1774	5253	0	1774	5253	
Grp Volume(v), veh/h	0	295	299	0	666	105	243	2994	0	97	1688	
Grp Sat Flow(s),veh/h/ln	0	1770	1777	0	1770	1568	1774	1695	0	1774	1695	(
Q Serve(g_s), s	0.0	31.5	31.8	0.0	35.0	10.3	8.9	89.6	0.0	4.5	33.6	0.0
Cycle Q Clear(g_c), s	0.0	31.5	31.8	0.0	35.0	10.3	8.9	89.6	0.0	4.5	33.6	0.0
Prop In Lane	0.00		0.26	0.00	00.0	1.00	1.00	00.0	0.00	1.00	00.0	0.00
Lane Grp Cap(c), veh/h	0	326	327	0	652	385	282	3410	0	115	3276	(
V/C Ratio(X)	0.00	0.91	0.91	0.00	1.02	0.27	0.86	0.88	0.00	0.84	0.52	0.00
Avail Cap(c_a), veh/h	0	326	327	0	652	385	510	3410	0	390	3276	0.0
HCM Platoon Ratio	1.00	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	0.0	87.6	87.7	0.0	77.5	58.0	24.2	25.1	0.0	52.6	18.0	0.0
Incr Delay (d2), s/veh	0.0	27.3	28.4	0.0	40.8	0.3	7.7	3.6	0.0	6.1	0.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	18.0	18.2	0.0	20.8	9.7	8.8	43.0	0.0	5.2	15.8	0.0
LnGrp Delay(d),s/veh	0.0	114.9	116.1	0.0	118.3	58.3	31.8	28.6	0.0	58.7	18.6	0.0
LnGrp LOS	0.0	F	F	0.0	F	E	C	C	0.0	E	В	0.0
Approach Vol, veh/h		594			771			3237	-	-	1785	
Approach Delay, s/veh		115.5			110.1			28.9			20.8	
Approach LOS		F			F		-	C			C	
Timer	- 1	2	3	4	5	6	7					
Assigned Phs	1	2	9	4	5	6		8				
Phs Duration (G+Y+Rc), s	18.6	129.4		42.0	13.6	134.4		42.0				
Change Period (Y+Rc), s	7.0	7.0		7.0	7.0	7.0		7.0				
Max Green Setting (Gmax), s	36.0	98.0		35.0	36.0	98.0		35.0				
Max Q Clear Time (g_c+l1), s	10.9	35.6		33.8	6.5	91.6		37.0				
Green Ext Time (p_c), s	0.7	60.1		0.9	0.1	6.3		0.0				
ntersection Summary	1778	77/7/2										
HCM 2010 Ctrl Delay			44.5									
HCM 2010 Cm Delay			44.5 D									
12111 2010 200			-									

	4	K	1	4	×	4	
Phase Number	1	2	4	5	6	8	
Movement	NEL	SWTL	NBT	SWL	NETL	SBT	
Lead/Lag	Lead	Lag		Lead	Lag		
Lead-Lag Optimize	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	None	C-Max	None	
Maximum Split (s)	43	105	42	43	105	42	
Maximum Split (%)	22.6%	55.3%	22.1%	22.6%	55.3%	22.1%	
Minimum Split (s)	12	33	32	12	33	30	
'ellow Time (s)	5	5	4	5	5	4	
II-Red Time (s)	2	2	3	2	2	3	
linimum Initial (s)	5	7	7	5	7	7	
ehicle Extension (s)	3	2.5	2.5	2	2.5	2.5	
linimum Gap (s)	3	3	3	3	3	3	
ime Before Reduce (s)	0	0	0	0	0	0	
ime To Reduce (s)	0	0	0	0	0	0	
Valk Time (s)		7	5		7	5	
lash Dont Walk (s)		19	20		19	18	
ual Entry	No	Yes	Yes	No	Yes	Yes	
nhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	
tart Time (s)	56	99	14	56	99	14	
ind Time (s)	99	14	56	99	14	56	
ield/Force Off (s)	92	7	49	92	7	49	
ield/Force Off 170(s)	92	178	29	92	178	31	
ocal Start Time (s)	49	92	7	49	92	7	
ocal Yield (s)	85	0	42	85	0	42	
ocal Yield 170(s)	85	171	22	85	171	24	
tersection Summary							
ycle Length			190				
Control Type	Actu	ated-Coo	rdinated				
latural Cycle			120				
Offset: 7 (4%), Referenced	to phase 2	:SWTL ar	nd 6:NET	L, Start of	Yellow		
	d Rd & Sou	ıth Dixie I	Hwy				
₩ _{Ø1}	K.	02 (R)					↑ ↑ø4
13 s	105 s	/2 (K)	-				42 s
/	Α.						1 72.5
₩ Ø5	10	6 (R)					♥ ♥ Ø8
43 s	105 s						42 s

	1	1	7	4	1	لر	*	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWI
Lane Configurations		1			^	7	7	ተተ _ጉ		4	ተ ቀጐ	
Traffic Volume (veh/h)	0	569	70	0	597	323	198	2088	128	160	2265	5
Future Volume (veh/h)	0	569	70	0	597	323	198	2088	128	160	2265	5
Number	7	4	14	3	8	18	1	6	16	5	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.99	1.00		1.00	1.00		1.0
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Adj Sat Flow, veh/h/ln	0	1881	1900	0	1881	1881	1881	1881	1900	1881	1881	190
Adj Flow Rate, veh/h	0	587	72	0	615	333	204	2153	0	165	2335	
Adj No. of Lanes	0	2	0	0	2	1	1	3	0	1	3	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.9
Percent Heavy Veh, %	0	1	1	0	1	1	1	1	1	1	1	
Cap, veh/h	0	572	70	0	640	402	224	3423	0	196	3265	
Arrive On Green	0.00	0.24	0.24	0.00	0.18	0.18	0.07	0.67	0.00	0.04	0.64	0.0
Sat Flow, veh/h	0	3288	391	0	3668	1578	1792	5305	0	1792	5305	
Grp Volume(v), veh/h	0	328	331	0	615	333	204	2153	0	165	2335	
Grp Sat Flow(s),veh/h/ln	0	1787	1798	0	1787	1578	1792	1712	0	1792	1712	
Q Serve(g_s), s	0.0	34.0	34.0	0.0	32.4	34.0	11.9	45.7	0.0	6.2	57.7	0.
Cycle Q Clear(g_c), s	0.0	34.0	34.0	0.0	32.4	34.0	11.9	45.7	0.0	6.2	57.7	0.
Prop In Lane	0.00	10075	0.22	0.00		1.00	1.00		0.00	1.00		0.0
Lane Grp Cap(c), veh/h	0	320	322	0	640	402	224	3423	0	196	3265	
V/C Ratio(X)	0.00	1.02	1.03	0.00	0.96	0.83	0.91	0.63	0.00	0.84	0.72	0.0
Avail Cap(c_a), veh/h	0	320	322	0	640	402	297	3423	0	325	3265	0.0
HCM Platoon Ratio	1.00	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.0
Uniform Delay (d), s/veh	0.0	72.4	72.4	0.0	77.4	67.1	52.5	18.2	0.0	29.7	23.1	0.
ncr Delay (d2), s/veh	0.0	56.8	58.0	0.0	26.2	13.2	25.8	0.9	0.0	4.4	1.4	0.
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
%ile BackOfQ(50%),veh/ln	0.0	21.8	22.0	0.0	18.4	32.1	12.2	21.8	0.0	5.7	27.7	0.
LnGrp Delay(d),s/veh	0.0	129.3	130.4	0.0	103.5	80.2	78.3	19.1	0.0	34.1	24.5	0.0
LnGrp LOS		F	F		F	F	E	В	0.0	С	C	,
Approach Vol, veh/h		659	W 1		948			2357			2500	
Approach Delay, s/veh		129.8			95.3			24.2			25.1	
Approach LOS		F			F			C			C	
Timer	1	2	3	4	5	6	7	8		-		
Assigned Phs	1	2	0	4	5	6		8				
Phs Duration (G+Y+Rc), s	21.2	127.8		41.0	15.4	133.6		41.0				
Change Period (Y+Rc), s	7.0	7.0		7.0	7.0	7.0		7.0				
	22.0	113.0		34.0	22.0	113.0		34.0				
Max Green Setting (Gmax), s Max Q Clear Time (g_c+l1), s	13.9	59.7		36.0	8.2	47.7		36.0				
Green Ext Time (p_c), s	0.3	50.6		0.0	0.2	61.2		0.0				
ntersection Summary	11.5			7/7				~,*				
HCM 2010 Ctrl Delay			45.8									
HCM 2010 LOS			D									
											7 77	

	45	K	1	4	×	4	
Phase Number	1	2	4	5	6	8	
Movement	NEL	SWTL	NBT	SWL	NETL	SBT	
Lead/Lag	Lead	Lag		Lead	Lag		
Lead-Lag Optimize	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	None	C-Max	None	
Maximum Split (s)	29	120	41	29	120	41	
Maximum Split (%)	15.3%	63.2%	21.6%	15.3%	63.2%	21.6%	
Minimum Split (s)	12	33	32	12	33	30	
Yellow Time (s)	5	5	4	5	5	4	
All-Red Time (s)	2	2	3	2	2	3	
Minimum Initial (s)	5	7	7	5	7	7	
Vehicle Extension (s)	3	2.5	2.5	2	2.5	2.5	
Minimum Gap (s)	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	
Walk Time (s)		7	5		7	5	
Flash Dont Walk (s)		19	20		19	18	
Dual Entry	No	Yes	Yes	No	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	188	27	147	188	27	147	
End Time (s)	27	147	188	27	147	188	
Yield/Force Off (s)	20	140	181	20	140	181	
Yield/Force Off 170(s)	20	121	161	20	121	163	
Local Start Time (s)	48	77	7	48	77	7	
Local Yield (s)	70	0	41	70	0	41	
Local Yield 170(s)	70	171	21	70	171	23	
Intersection Summary						1111	
Cycle Length			190				
Control Type	Actu	ated-Coo					
Natural Cycle			90				
Offset: 140 (74%), Reference	ced to phas	e 2:SWT	L and 6:N	IETL, Sta	rt of Yello	W	
A section of the sect							
Splits and Phases: 2: Re	d Rd & Sou	ıth Dixie I	Hwy				
1) at	(n)		1-1-				▼ ↑ø4
7 Ø1 7 120 s	Ø2 (R)					-	41 s
/							HIS
₩ Ø5	Ø6 (R)						♥ Ø8
29 s 120 s		- 100				100	415

	1	1	*	4	1	لر	1	×	4	4	K	t
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SW
Lane Configurations		1			44	7	75	ተ ቀጉ		19	ተ ቀጭ	
Traffic Volume (veh/h)	0	569	70	0	597	323	198	2088	128	160	2265	5
Future Volume (veh/h)	0	569	70	0	597	323	198	2088	128	160	2265	5
Number	7	4	14	3	8	18	1	6	16	5	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.99	1.00		1.00	1.00	177	1.0
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Adj Sat Flow, veh/h/ln	0	1881	1900	0	1881	1881	1881	1881	1900	1881	1881	190
Adj Flow Rate, veh/h	0	587	72	0	615	333	204	2153	0	165	2335	
Adj No. of Lanes	0	2	0	0	2	1	1	3	0	1	3	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.9
Percent Heavy Veh, %	0	1	1	0	1	1	1	1	1	1	1	
Cap, veh/h	0	605	74	0	677	422	223	3363	0	194	3201	
Arrive On Green	0.00	0.25	0.25	0.00	0.19	0.19	0.08	0.65	0.00	0.05	0.62	0.0
Sat Flow, veh/h	0	3289	391	0	3668	1579	1792	5305	0	1792	5305	
Grp Volume(v), veh/h	0	328	331	0	615	333	204	2153	0	165	2335	
Grp Sat Flow(s),veh/h/ln	0	1787	1799	0	1787	1579	1792	1712	0	1792	1712	
Q Serve(g_s), s	0.0	34.5	34.7	0.0	32.0	36.0	12.2	47.3	0.0	6.4	59.7	0.
Cycle Q Clear(g_c), s	0.0	34.5	34.7	0.0	32.0	36.0	12.2	47.3	0.0	6.4	59.7	0.
Prop In Lane	0.00	04.0	0.22	0.00	02.0	1.00	1.00	47.0	0.00	1.00	00.1	0.0
ane Grp Cap(c), veh/h	0.00	339	341	0.00	677	422	223	3363	0.00	194	3201	0,0
V/C Ratio(X)	0.00	0.97	0.97	0.00	0.91	0.79	0.91	0.64	0.00	0.85	0.73	0.0
Avail Cap(c_a), veh/h	0.00	339	341	0.00	677	422	293	3363	0.00	321	3201	0.0
HCM Platoon Ratio	1.00	1.33	1.33	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Upstream Filter(I)	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.0
Uniform Delay (d), s/veh	0.0	70.5	70.6	0.0	75.4	64.8	53.5	19.5	0.0	30.7	24.7	0.0
nor Delay (d2), s/veh	0.0	40.1	41.1	0.0	16.0	9.4	26.3	0.9	0.0	5.2	1.5	0.
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
%ile BackOfQ(50%),veh/ln	0.0	20.8	21.1	0.0	17.3	31.5	12.2	22.6	0.0	5.7	28.6	0.
_nGrp Delay(d),s/veh	0.0	110.6	111.6	0.0	91.4	74.2	79.9	20.4	0.0	35.9	26.2	0.
_nGrp LOS	0.0	F	F	0.0	F	E	E	C	0.0	D	C	0.
Approach Vol, veh/h		659			948			2357			2500	
Approach Delay, s/veh		111.1			85.4			25.6			26.9	
Approach LOS	-	F			F			23.0 C			20.9 C	
Approach LOS								C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	21.6	125.4		43.0	15.6	131.4		43.0				
Change Period (Y+Rc), s	7.0	7.0		7.0	7.0	7.0		7.0				
Max Green Setting (Gmax), s	22.0	111.0		36.0	22.0	111.0		36.0				
Max Q Clear Time (g_c+l1), s	14.2	61.7		36.7	8.4	49.3		38.0				
Green Ext Time (p_c), s	0.3	47.0		0.0	0.2	58.0		0.0				
ntersection Summary												
HCM 2010 Ctrl Delay			43.6									
HCM 2010 LOS			D									
10.11, 2010 200												

	45	K	1	4	×	4	
Phase Number	1	2	4	5	6	8	
Movement	NEL	SWTL	NBT	SWL	NETL	SBT	
Lead/Lag	Lead	Lag		Lead	Lag		
Lead-Lag Optimize	Yes	Yes		Yes	Yes		
Recall Mode	None	C-Max	None	None	C-Max	None	
Maximum Split (s)	29	118	43	29	118	43	
Maximum Split (%)	15.3%	62.1%	22.6%	15.3%	62.1%	22.6%	
Minimum Split (s)	12	33	32	12	33	30	
Yellow Time (s)	5	5	4	5	5	4	
All-Red Time (s)	2	2	3	2	2	3	
Minimum Initial (s)	5	7	7	5	7	7	
Vehicle Extension (s)	3	2.5	2.5	2	2.5	2.5	
Minimum Gap (s)	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	
Walk Time (s)		7	5		7	5	
Flash Dont Walk (s)		19	20		19	18	
Dual Entry	No	Yes	Yes	No	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	0	29	147	0	29	147	
End Time (s)	29	147	0	29	147	0	
Yield/Force Off (s)	22	140	183	22	140	183	
Yield/Force Off 170(s)	22	121	163	22	121	165	
_ocal Start Time (s)	50	79	7	50	79	7	
Local Yield (s)	72	0	43	72	0	43	
Local Yield 170(s)	72	171	23	72	171	25	
ntersection Summary							
Cycle Length			190				
Control Type	Actu	ated-Coo					
Natural Cycle			90				
Offset: 140 (74%), Reference	ced to phas	se 2:SWT	L and 6:N	IETL, Sta	rt of Yello	w	
Splits and Phases: 2: Re	d Rd & Sou	ıth Dixie I	Hwy				
At K	an (n)						_ †
7 Ø1 7 (Ø2 (R)			-			Ø4
1188	Paralle						43.5
₩ Ø5 ×	Ø6 (R)						■
20 e 118 e							42 a

Intersection		
Intersection Delay, s/veh Intersection LOS	10	
Intersection LOS	Α	

CELL	CEI	CET	CED	NIVA/I I	NIIA/I	NIMIT	NIME	NELL	NEL	NET	NED
SEU	OEL		OER	INVVO	INVVL		INVVIX	NEU	INEL		NER
			- de la company			**					
0	9	80	87	0	10	9	3	0	96	136	12
0	9	80	87	0	10	9	3	0	96	136	12
0.92	0.80	0.80	0.80	0.92	0.80	0.80	0.80	0.92	0.80	0.80	0.80
2	2	2	2	2	2	2	2	2	2	2	2
0	11	100	109	0	13	11	4	0	120	170	15
0	0	1	0	0	0	1	0	0	0	1	0
	SE				NW				NE		
	NW		7-2		SE				SW		
	1				1				1		
	SW				NE				SE		
	1				1				1		
	NE				SW				NW		
	1				1				1		
	9.6				8.5				10.9		
	Α				Α				В		
	0.92 2 0	0 9 0 9 0.92 0.80 2 2 0 11 0 0 SE NW 1 SW 1 NE 1 9.6	0 9 80 0 9 80 0.92 0.80 0.80 2 2 2 2 0 11 100 0 0 1 SE NW 1 SW 1 NE 1 9.6	0 9 80 87 0 9 80 87 0.92 0.80 0.80 0.80 2 2 2 2 2 0 11 100 109 0 0 1 0 SE NW 1 SW 1 NE 1 9.6	0 9 80 87 0 0 9 80 87 0 0.92 0.80 0.80 0.80 0.92 2 2 2 2 2 2 0 11 100 109 0 0 0 1 0 0 SE NW 1 SW 1 NE 1 9.6	0 9 80 87 0 10 0 9 80 87 0 10 0.92 0.80 0.80 0.80 0.92 0.80 2 2 2 2 2 2 2 2 0 11 100 109 0 13 0 0 1 0 0 0 SE NW NW SE 1 1 1 SW NE 1 1 NE SW 1 1 9.6 8.5	0 9 80 87 0 10 9 0 9 80 87 0 10 9 0.92 0.80 0.80 0.80 0.92 0.80 0.80 2 2 2 2 2 2 2 2 2 0 11 100 109 0 13 11 0 0 1 0 0 0 1 SE NW NW NW SE 1 1 SW NE 1 1 NE SW 1 1 9.6 8.5	0 9 80 87 0 10 9 3 0 9 80 87 0 10 9 3 0.92 0.80 0.80 0.80 0.92 0.80 0.80 0.80 2 2 2 2 2 2 2 2 2 2 2 0 11 100 109 0 13 11 4 0 0 1 0 0 0 0 1 0 SE NW NW SE 1 1 1 SW NE 1 1 1 NE SW 1 1 9.6 8.5	0 9 80 87 0 10 9 3 0 0 9 80 87 0 10 9 3 0 0.92 0.80 0.80 0.80 0.92 0.80 0.80 0.80 0.92 2 2 2 2 2 2 2 2 2 2 2 2 2 0 11 100 109 0 13 11 4 0 0 0 1 0 0 0 1 0 0 0 1 0 0 SE NW NW SE 1 1 1 SW NE 1 1 1 NE SW 1 1 9.6 8.5	0 9 80 87 0 10 9 3 0 96 0 9 80 87 0 10 9 3 0 96 0.92 0.80 0.80 0.80 0.80 0.80 0.92 0.80 2 8 SW NW NE	NW SE SW NE

Lane	NELn1	NWLn1	SELn1	SWLn1
Vol Left, %	39%	45%	5%	4%
Vol Thru, %	56%	41%	45%	94%
Vol Right, %	5%	14%	49%	2%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	244	22	176	82
LT Vol	96	10	9	3
Through Vol	136	9	80	77
RT Vol	12	3	87	2
Lane Flow Rate	305	28	220	102
Geometry Grp	1	1	1	1
Degree of Util (X)	0.398	0.04	0.284	0.139
Departure Headway (Hd)	4.7	5.207	4.655	4.887
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	762	683	768	730
Service Time	2.748	3.276	2.704	2.946
HCM Lane V/C Ratio	0.4	0.041	0.286	0.14
HCM Control Delay	10.9	8.5	9.6	8.7
HCM Lane LOS	В	Α	Α	Α
HCM 95th-tile Q	1.9	0.1	1.2	0.5

e			

Intersection Delay, s/veh Intersection LOS

MANAGEMENT AND ADDRESS OF THE PERSON NAMED IN COLUMN TO ADDRESS OF THE PERSON				
Movement	SWU	SWL	SWT	SWR
Lane Configurations			4	
Traffic Vol, veh/h	0	3	77	2
Future Vol, veh/h	0	3	77	2
Peak Hour Factor	0.92	0.80	0.80	0.80
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	4	96	3
Number of Lanes	0	0	1	0
Approach		SW		200
Opposing Approach		NE		
Opposing Lanes		1		
Conflicting Approach Left		NW		
Conflicting Lanes Left		1		
Conflicting Approach Right		SE		
Conflicting Lanes Right		1		
HCM Control Delay		8.7		
HCM LOS		Α		

Intersection		
Intersection Delay, s/veh	10.4	
Intersection LOS	В	

Movement	SEU	SEL	SET	SER	NWU	NWL	NWT	NWR	NEU	NEL	NET	NER
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	25	49	4	0	1	57	119	0	127	131	36
Future Vol, veh/h	0	25	49	4	0	1	57	119	0	127	131	36
Peak Hour Factor	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91	0.92	0.91	0.91	0.91
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1
Mvmt Flow	0	27	54	4	0	1	63	131	0	140	144	40
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		SE				NW				NE		
Opposing Approach		NW				SE				SW		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SW				NE				SE		
Conflicting Lanes Left		1				- 1				1		
Conflicting Approach Right		NE				SW				NW		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		9.3				9.6				11.6		
HCM LOS		A				Α				В		

Lane	NELn1	NWLn1	SELn1	SWLn1
Vol Left, %	43%	1%	32%	6%
Vol Thru, %	45%	32%	63%	78%
Vol Right, %	12%	67%	5%	16%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	294	177	78	151
LT Vol	127	1	25	9
Through Vol	131	57	49	118
RT Vol	36	119	4	24
Lane Flow Rate	323	195	86	166
Geometry Grp	1	1	1	1
Degree of Util (X)	0.433	0.26	0.131	0.227
Departure Headway (Hd)	4.823	4.804	5.493	4.925
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	740	739	657	718
Service Time	2.908	2.895	3.493	3.024
HCM Lane V/C Ratio	0.436	0.264	0.131	0.231
HCM Control Delay	11.6	9.6	9.3	9.5
HCM Lane LOS	В	Α	Α	A
HCM 95th-tile Q	2.2	1	0.4	0.9

Intersection

Intersection Delay, s/veh Intersection LOS

Movement	SWU	SWL	SWT	SWR
Lane Configurations			4	
Traffic Vol, veh/h	0	9	118	24
Future Vol, veh/h	0	9	118	24
Peak Hour Factor	0.92	0.91	0.91	0.91
Heavy Vehicles, %	1	1	1	1
Mvmt Flow	0	10	130	26
Number of Lanes	0	0	1	0
Approach		SW	NEX.	30.53
Opposing Approach		NE		
Opposing Lanes		1		
Conflicting Approach Left		NW		
Conflicting Lanes Left		1		
Conflicting Approach Right		SE		
Conflicting Lanes Right		1		
HCM Control Delay		9.5		
HCM LOS		Α		

Intersection							
Int Delay, s/veh	6.3						
Movement	NBT	NBR	SBL	SBT	SWL	SWR	3.3
Lane Configurations	^ }	1	19	^	7	7	
Fraffic Vol, veh/h	477		158	683	90	70	
Future Vol, veh/h	477	165	158	683	90	70	
Conflicting Peds, #/hr	0	4	4	0	1	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None	2	None		Stop	
Storage Length	-	-	92	-	0	50	
/eh in Median Storage, #	0	-	-	0	0		
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	95	95	95	95	95	95	
leavy Vehicles, %	2		2	2	2	2	
Nymt Flow	502	174	166	719	95	74	
Anior/Minor	Mojord		Major2		Minor1		
Major/Minor	Major1	^		0		040	
Conflicting Flow All	0		680	0	1286	342	
Stage 1					593		
Stage 2			444	•	693	0.04	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	+		-	5.84		
Critical Hdwy Stg 2		•	0.00	-	5.84	2.20	
ollow-up Hdwy			2.22	*	3.52	3.32	
ot Cap-1 Maneuver		*	908	-	156	654	
Stage 1				-	515		
Stage 2			-		457	-	
Platoon blocked, %			000	_	407	CEO	
Mov Cap-1 Maneuver		-	908	7	127	652	
Mov Cap-2 Maneuver		-	-		127		
Stage 1		-			513		
Stage 2					373		
Approach	NB		SB		SW		
HCM Control Delay, s	0		1.9		55.1		
ICM LOS					F		
Minor Lane/Major Mvmt	NBT NBR	SBL	SBTSWLn18	SWI n2			
Capacity (veh/h)			- 127	652			
HCM Lane V/C Ratio		0.183	- 0.746				
HCM Control Delay (s)		9.9	- 89.2	11.2			
HCM Lane LOS		9.9 A	-	В			
HCM 95th %tile Q(veh)		0.7		0.4			
icivi aprii wille d(ven)		0.7	- 4.3	0.4			

Intersection							
Int Delay, s/veh 11.4							
Movement	NBT	NBR	SBL	SBT	SWL	SWR	
Lane Configurations	1 13		1	ተ ተ	W _i	77	
Traffic Vol, veh/h	510	115	119	759	124	101	
Future Vol, veh/h	510	115	119	759	124	101	
Conflicting Peds, #/hr	0	18	18	0	5	6	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None	-	None		Stop	
Storage Length	-	-	92	-	0	50	
Veh in Median Storage, #	0		-	0	0		
Grade, %	0	-		0	0	-	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	1	1	1	1	1	1	
Mvmt Flow	543	122	127	807	132	107	
Major/Minor	Major1	-575	Major2		Minor1		
Conflicting Flow All	0	0	683	0	1284	356	
Stage 1		-		12	622		
Stage 2	-		-	4	662	_	
Critical Hdwy		-	4.12	-	6.82	6.92	
Critical Hdwy Stg 1	-	-	-	- 4	5.82	-	
Critical Hdwy Stg 2		-			5.82		
Follow-up Hdwy	-	-	2.21	-	3.51	3.31	
Pot Cap-1 Maneuver	-	-	913		158	643	
Stage 1	-	-	_		500	_	
Stage 2		-	-	-	477	-	
Platoon blocked, %	_	-					
Mov Cap-1 Maneuver			908		133	628	
Mov Cap-2 Maneuver	-	-	-	-	133	-	
Stage 1	2	-		2	491	9	
Stage 2	-			-	408	-	
Approach	NB		SB		SW		
HCM Control Delay, s	0		1.3		82.6		
HCM LOS					F		
Minor Lane/Major Mvmt	NBT NBR	SBL	SBTSWLn1S	SWLn2			
Capacity (veh/h)		908	- 133	628			
HCM Lane V/C Ratio		0.139	- 0.992				
HCM Control Delay (s)		9.6	- 140.2	11.9			**********
HCM Lane LOS		Α	- F	В			
HCM 95th %tile Q(veh)		0.5	- 7	0.6			

Movement Lane Configurations	EDI							
	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	^	1>		19	7"		
Traffic Volume (vph)	99	435	293	31	43	112		
Future Volume (vph)	99	435	293	31	43	112		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.0	5.0	5.0	1000	5.0	5.0		
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00		
Frpb, ped/bikes	1.00	1.00	1.00		1.00	0.99		
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00		
Frt	1.00	1.00	0.99		1.00	0.85		
Fit Protected	0.95	1.00	1.00		0.95	1.00		
Satd. Flow (prot)	1751	1845	1817		1752	1559		
Flt Permitted	0.46	1.00	1.00		0.95	1.00		
	857	1845	1817		1752	1559		
Satd. Flow (perm)				0.00				
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93		
Adj. Flow (vph)	106	468	315	33	46	120		
RTOR Reduction (vph)	0	0	4	0	0	82		
Lane Group Flow (vph)	106	468	344	0	46	38		
Confl. Peds. (#/hr)	3	001	004	3	4	2		
Heavy Vehicles (%)	3%	3%	3%	3%	3%	3%		
Turn Type	pm+pt	NA	NA			custom		
Protected Phases	1	6	2		8	8		
Permitted Phases	6					1		
Actuated Green, G (s)	55.0	55.0	45.0		20.0	27.0		
Effective Green, g (s)	55.0	55.0	45.0		20.0	27.0		
Actuated g/C Ratio	0.65	0.65	0.53		0.24	0.32		
Clearance Time (s)	3.0	5.0	5.0		5.0	5.0		
Lane Grp Cap (vph)	628	1193	961		412	586		
v/s Ratio Prot	0.01	c0.25	0.19		c0.03	0.02		
v/s Ratio Perm	0.10	31331577			1	0.01		
v/c Ratio	0.17	0.39	0.36		0.11	0.07		
Uniform Delay, d1	6.0	7.1	11.6		25.5	20.2		
Progression Factor	1.00	1.00	1.00		1.00	1.00		
Incremental Delay, d2	0.6	1.0	1.0		0.5	0.2		
Delay (s)	6.6	8.1	12.7		26.1	20.4		
Level of Service	A	Α	В		C	С		
Approach Delay (s)		7.8	12.7		22.0			
Approach LOS		A	В		C			
Intersection Summary			NA EAS					
HCM 2000 Control Delay			11.5	Н	CM 2000	Level of Servi	ce	В
HCM 2000 Volume to Capa	city ratio		0.33		2000	_0.0.0.000		
Actuated Cycle Length (s)	, radio		85.0	Si	m of los	t time (s)		13.0
Intersection Capacity Utiliza	ation		40.3%			of Service		Α
Analysis Period (min)			15	,0	O LOVOI	01 0011100		
c Critical Lane Group			10					

	1	4	1	4	
Phase Number	1	2	6	8	
Movement	EBL	WBT	EBTL	SBL	
Lead/Lag	Lead	Lag			
Lead-Lag Optimize	Yes	Yes			
Recall Mode	Max	Max	Max	Max	
Maximum Split (s)	10	50	60	25	
Maximum Split (%)	11.8%	58.8%	70.6%	29.4%	
Minimum Split (s)	9.5	23	23	23	
Yellow Time (s)	3	4	4	4	
All-Red Time (s)	0	1	1	1	
Minimum Initial (s)	5	15	15	7	
Vehicle Extension (s)	2	1	1	2.5	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)					
Flash Dont Walk (s)					
Dual Entry	No	Yes	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	22.5	32.5	22.5	82.5	
End Time (s)	32.5	82.5	82.5	22.5	
Yield/Force Off (s)	29.5	77.5	77.5	17.5	
Yield/Force Off 170(s)	29.5	77.5	77.5	17.5	
Local Start Time (s)	30	40	30	5	
Local Yield (s)	37	0	0	25	
Local Yield 170(s)	37	0	0	25	
Intersection Summary			() () ()		
Cycle Length			85		
Control Type		F	Pretimed		
Natural Cycle			60		
Offset: 77.5 (91%), Referer	nced to pha	se 2:WB7	and 6:E	BTL, Start	of Yellow
Splits and Phases: 5: SV	V 72nd St 8	Yumuri :	St		
JA 4-					(3)
Ø1 Ø2 (F	₹)				
10 s 50 s	W. Year	-			The state of the s
→26 (R)					• × Ø8
60 c					75.0

	1	-	-	1	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	^	ß		19	7	
Traffic Volume (vph)	138	404	341	50	182	178	
Future Volume (vph)	138	404	341	50	182	178	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	3.0	5.0	5.0	15,55	5.0	5.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	1.00		1.00	0.99	
Flpb, ped/bikes	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.98		1.00	0.85	
FIt Protected	0.95	1.00	1.00		0.95	1.00	
Satd. Flow (prot)	1787	1881	1844		1787	1590	
FIt Permitted	0.40	1.00	1.00		0.95	1.00	
Satd. Flow (perm)	752	1881	1844		1787	1590	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	
Adj. Flow (vph)	152	444	375	55	200	196	
RTOR Reduction (vph)	0	0	6	0	0	134	
Lane Group Flow (vph)	152	444	424	0	200	62	
Confl. Peds. (#/hr)	1			1	10	1	
Turn Type	pm+pt	NA	NA		Prot	custom	
Protected Phases	1	6	2		8	8	
Permitted Phases	6	,	_			1	
Actuated Green, G (s)	55.0	55.0	45.0		20.0	27.0	
Effective Green, g (s)	55.0	55.0	45.0		20.0	27.0	
Actuated g/C Ratio	0.65	0.65	0.53		0.24	0.32	
Clearance Time (s)	3.0	5.0	5.0		5.0	5.0	
ane Grp Cap (vph)	571	1217	976		420	598	
//s Ratio Prot	0.02	c0.24	c0.23		c0.11	0.02	
//s Ratio Perm	0.15	00.24	00.20		00.11	0.01	
//c Ratio	0.13	0.36	0.43		0.48	0.10	
Jniform Delay, d1	6.6	6.9	12.2		28.0	20.5	
Progression Factor	1.00	1.00	1.00		1.00	1.00	
ncremental Delay, d2	1.1	0.8	1.4	-	3.8	0.3	
Delay (s)	7.7	7.8	13.6		31.8	20.8	
evel of Service	A	A	В		C	C	
Approach Delay (s)	71	7.8	13.6		26.4	,	
Approach LOS		A	В		C		
ntersection Summary		Z-13					
HCM 2000 Control Delay			14.7	H	CM 2000	Level of Service	е В
HCM 2000 Volume to Capa	city ratio		0.44				
Actuated Cycle Length (s)	The state of the s		85.0	St	ım of los	st time (s)	13.0
ntersection Capacity Utiliza	ation		50.4%			of Service	Α
Analysis Period (min)			15		THE REAL PROPERTY.	THE RESERVE OF THE PERSON NAMED IN	

	20	-	1	4	
Phase Number	1	2	6	8	
Movement	EBL	WBT	EBTL	SBL	
Lead/Lag	Lead	Lag			
Lead-Lag Optimize	Yes	Yes			
Recall Mode	Max	Max	Max	Max	
Maximum Split (s)	10	50	60	25	
Maximum Split (%)	11.8%	58.8%	70.6%	29.4%	
Minimum Split (s)	9.5	23	23	23	
Yellow Time (s)	3	4	4	4	
All-Red Time (s)	0	1	1	1	
Minimum Initial (s)	5	15	15	7	
Vehicle Extension (s)	2	1	1	2.5	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)					
Flash Dont Walk (s)					
Dual Entry	No	Yes	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	22.5	32.5	22.5	82.5	
End Time (s)	32.5	82.5	82.5	22.5	
Yield/Force Off (s)	29.5	77.5	77.5	17.5	
Yield/Force Off 170(s)	29.5	77.5	77.5	17.5	
Local Start Time (s)	30	40	30	5	
Local Yield (s)	37	0	0	25	
Local Yield 170(s)	37	0	0	25	
Intersection Summary					
Cycle Length			85		
Control Type		F	Pretimed		
Natural Cycle			60		
Offset: 77.5 (91%), Referer	nced to pha	se 2:WBT	4.5	BTL, Start	of Yellow
STATE OF THE STATE	ALLO STATE OF THE PARTY				
Splits and Phases: 5: SV	V 72nd St 8	Yumuri S	St		
JA 4-	2)				
Ø1 Ø2 (F	1				
A					٨.
→Ø6 (R)					▼ Ø8
60 s					25 s

	1	-	1	1	-	1	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	19	1		19	1	7	7	^	7"	1	1	7"
Traffic Volume (vph)	148	269	35	116	200	47	96	504	118	102	352	105
Future Volume (vph)	148	269	35	116	200	47	96	504	118	102	352	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.98		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1767	1823		1770	1863	1559	1751	1863	1542	1770	1863	1533
Flt Permitted	0.38	1.00		0.17	1.00	1.00	0.45	1.00	1.00	0.32	1.00	1.00
Satd. Flow (perm)	715	1823		310	1863	1559	824	1863	1542	592	1863	1533
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	163	296	38	127	220	52	105	554	130	112	387	115
RTOR Reduction (vph)	0	3	0	0	0	37	0	0	40	0	0	40
Lane Group Flow (vph)	163	331	0	127	220	15	105	554	90	112	387	75
Confl. Peds. (#/hr)	3		5	5		3	16		8	8		16
Turn Type	pm+pt	NA		pm+pt	NA	custom	pm+pt	NA	custom	pm+pt	NA	custom
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		14	6		7 6	2		3 2
Actuated Green, G (s)	51.9	40.0		51.3	39.7	54.8	114.1	105.0	122.6	114.7	105.3	123.2
Effective Green, g (s)	51.9	40.0		51.3	39.7	54.8	114.1	105.0	122.6	114.7	105.3	123.2
Actuated g/C Ratio	0.27	0.21		0.27	0.21	0.29	0.60	0.55	0.65	0.60	0.55	0.65
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	2.0	2.5		2.0	2.5		2.0	1.0		2.0	1.0	
Lane Grp Cap (vph)	261	383		172	389	449	539	1029	994	415	1032	994
v/s Ratio Prot	0.04	c0.18		c0.04	0.12		0.01	c0.30		c0.01	0.21	
v/s Ratio Perm	0.13			0.15		0.01	0.11		0.06	0.15		0.05
v/c Ratio	0.62	0.86		0.74	0.57	0.03	0.19	0.54	0.09	0.27	0.38	0.08
Uniform Delay, d1	58.0	72.4		56.9	67.4	48.6	17.0	27.1	12.7	19.1	23.8	12.3
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.62	1.25	0.11
Incremental Delay, d2	4.0	17.8		13.3	1.5	0.0	0.1	2.0	0.0	0.1	0.5	0.1
Delay (s)	62.0	90.1		70.1	68.9	48.6	17.0	29.1	12.7	31.0	30.3	1.5
Level of Service	E	F		E	E	D	В	C	В	С	C	Α
Approach Delay (s)		80.9			66.7			24.8			25.0	
Approach LOS		F			E			С			С	
Intersection Summary					Z.							
HCM 2000 Control Delay			44.2	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.61									
Actuated Cycle Length (s)			190.0			t time (s)			24.0			
Intersection Capacity Utiliza	ation		77.8%	IC	U Level	of Service)		D			
Analysis Period (min)			15									
c Critical Lane Group												

	1	1/2	1	*	1	4	10	1	
Phase Number	1	2	3	4	5	6	7	8	
Movement	NBL	SBTL	EBL	WBTL	SBL	NBTL	WBL	EBTL	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	C-Max	None	None	Max	None	None	
Maximum Split (s)	12	96	18	64	12	96	18	64	
Maximum Split (%)	6.3%	50.5%	9.5%	33.7%	6.3%	50.5%	9.5%	33.7%	
Minimum Split (s)	11	28	11	29	11	28	11	29	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	5	7	5	7	5	7	5	7	
Vehicle Extension (s)	2	1	2	2.5	2	1	2	2.5	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		7		7		7		7	
Flash Dont Walk (s)		15		16		15		. 16	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	148	160	66	84	148	160	66	84	
End Time (s)	160	66	84	148	160	66	84	148	
Yield/Force Off (s)	154	60	78	142	154	60	78	142	
Yield/Force Off 170(s)	154	45	78	126	154	45	78	126	
Local Start Time (s)	70	82	178	6	70	82	178	6	
Local Yield (s)	76	172	0	64	76	172	0	64	
Local Yield 170(s)	76	157	0	48	76	157	0	48	
Intersection Summary									
Cycle Length			190						
Control Type	Actu	ated-Coo							
Natural Cycle			80						
Offset: 78 (41%), Reference	ed to phase	3:EBL, 3	Start of Ye	ellow					
Splits and Phases: 6: SW	72nd St 8	Red Rd							
01 02						1/4		+	
							23 (R)	₩ Ø4	
12 s 96 s						18 s	6	4 s	
Ø5 TØ6						10	77	108	
17 4 000		_				10.0		4 =	

	1	-	1	-	-	1	1	1	-	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	T)		19	^	7"	N.	1	7	7	1	7
Traffic Volume (vph)	148	269	35	116	200	47	96	504	118	102	352	105
Future Volume (vph)	148	269	35	116	200	47	96	504	118	102	352	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.98		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1768	1823		1770	1863	1559	1750	1863	1542	1770	1863	1533
Flt Permitted	0.30	1.00		0.19	1.00	1.00	0.45	1.00	1.00	0.33	1.00	1.00
Satd. Flow (perm)	567	1823		360	1863	1559	834	1863	1542	606	1863	1533
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	163	296	38	127	220	52	105	554	130	112	387	115
RTOR Reduction (vph)	0	3	0	0	0	38	0	0	36	0	0	38
Lane Group Flow (vph)	163	331	0	127	220	14	105	554	94	112	387	77
Confl. Peds. (#/hr)	3		5	5		3	16		8	8		16
Turn Type	pm+pt	NA		pm+pt	NA	custom	pm+pt	NA	custom	pm+pt	NA	custom
Protected Phases	3	8		7	4		1	6		5	2	100
Permitted Phases	8			4		14	6		76	2		32
Actuated Green, G (s)	54.3	40.3		44.3	35.3	50.2	116.4	107.5	122.5	117.0	107.8	127.8
Effective Green, g (s)	54.3	40.3		44.3	35.3	50.2	116.4	107.5	122.5	117.0	107.8	127.8
Actuated g/C Ratio	0.29	0.21		0.23	0.19	0.26	0.61	0.57	0.64	0.62	0.57	0.67
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	2.0	2.5		2.0	2.5		2.0	1.0		2.0	1.0	
Lane Grp Cap (vph)	250	386		150	346	411	553	1054	994	429	1057	1031
v/s Ratio Prot	c0.05	c0.18		0.04	0.12		0.01	c0.30		c0.01	0.21	
v/s Ratio Perm	0.14			0.16		0.01	0.11		0.06	0.15		0.05
v/c Ratio	0.65	0.86		0.85	0.64	0.03	0.19	0.53	0.09	0.26	0.37	0.08
Uniform Delay, d1	54.7	72.1		66.0	71.4	51.9	15.9	25.5	12.8	17.9	22.4	10.7
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.80	1.42	0.13
Incremental Delay, d2	5.3	16.7		32.2	3.3	0.0	0.1	1.9	0.0	0.1	0.5	0.1
Delay (s)	60.0	88.7		98.2	74.7	51.9	16.0	27.4	12.8	32.3	32.5	1.5
Level of Service	E	F		F	E	D	В	C	В	C	C	Α
Approach Delay (s)		79.3			79.2			23.5			26.6	
Approach LOS		Е			E			С			С	
Intersection Summary			Y-A-T		4							
HCM 2000 Control Delay			46.1	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.61	- X								
Actuated Cycle Length (s)			190.0			t time (s)			24.0			
Intersection Capacity Utiliza	ation		77.8%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	1	1	1	*	1	4	10	A	
Phase Number	1	2	3	4	5	6	7	8	
Movement	NBL	SBTL	EBL	WBTL	SBL	NBTL	WBL	EBTL	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	C-Max	None	None	Max	None	None	
Maximum Split (s)	11	90	20	69	11	90	15	74	
Maximum Split (%)	5.8%	47.4%	10.5%	36.3%	5.8%	47.4%	7.9%	38.9%	
Minimum Split (s)	11	28	11	29	11	28	11	29	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	5	7	5	7	5	7	5	7	
Vehicle Extension (s)	2	1	2	2.5	2	1	2	2.5	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		7		7		7		7	
Flash Dont Walk (s)		15		16		15		16	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	153	164	64	84	153	164	64	79	
End Time (s)	164	64	84	153	164	64	79	153	
Yield/Force Off (s)	158	58	78	147	158	58	73	147	
Yield/Force Off 170(s)	158	43	78	131	158	43	73	131	
Local Start Time (s)	75	86	176	6	75	86	176	1	
Local Yield (s)	80	170	0	69	80	170	185	69	
Local Yield 170(s)	80	155	0	53	80	155	185	53	
Intersection Summary			MA Y						
Cycle Length			190						
Control Type	Actua	ated-Coo	rdinated						
Natural Cycle			80						
Offset: 78 (41%), Reference	d to phase	3:EBL, S	Start of Ye	ellow					
Splits and Phases: 6: SW	72nd St &	Red Rd							
* oh						1) 🕏	Ø4	
01 ♥ 02 11 \$ 90 s					20	Ø3 (R	69 s	Ø4	
05 106						€07	A 108		

	1	-	1	1	4	*	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1/1	P		7	^	7	1	↑	7	N.	1	7
Traffic Volume (vph)	123	241	53	190	265	24	80	343	146	78	528	212
Future Volume (vph)	123	241	53	190	265	24	80	343	146	78	528	212
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.98		1.00	1.00	0.98	1.00	1.00	0.94	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00
Frt	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1785	1789		1787	1881	1569	1787	1881	1510	1712	1881	1536
FIt Permitted	0.25	1.00		0.18	1.00	1.00	0.35	1.00	1.00	0.49	1.00	1.00
Satd. Flow (perm)	472	1789		347	1881	1569	652	1881	1510	877	1881	1536
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	126	246	54	194	270	24	82	350	149	80	539	216
RTOR Reduction (vph)	0	5	0	0	0	18	0	0	49	0	0	61
Lane Group Flow (vph)	126	295	0	194	270	6	82	350	100	80	539	155
Confl. Peds. (#/hr)	6		26	26		6	27	E	49	49		27
Turn Type	pm+pt	NA		pm+pt	NA	custom	pm+pt	NA	custom	pm+pt	NA	custom
Protected Phases	3	8		7	4		1	6		5	2	ouoto
Permitted Phases	8			4		14	6		76	2		32
Actuated Green, G (s)	47.3	36.4		47.5	36.5	50.3	118.7	110.9	127.9	118.5	110.8	127.7
Effective Green, g (s)	47.3	36.4		47.5	36.5	50.3	118.7	110.9	127.9	118.5	110.8	127.7
Actuated g/C Ratio	0.25	0.19		0.25	0.19	0.26	0.62	0.58	0.67	0.62	0.58	0.67
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0	0.01	6.0	6.0	0.01
Vehicle Extension (s)	2.0	2.5		2.0	2.5		2.0	1.0		2.0	1.0	
Lane Grp Cap (vph)	192	342		170	361	415	453	1097	1016	580	1096	1032
v/s Ratio Prot	0.04	0.16		c0.07	0.14	410	c0.01	0.19	1010	0.01	c0.29	1002
v/s Ratio Perm	0.13	0.10		c0.22	0.14	0.00	0.11	0.13	0.07	0.08	60.20	0.10
v/c Ratio	0.66	0.86		1.14	0.75	0.02	0.18	0.32	0.10	0.14	0.49	0.15
Uniform Delay, d1	59.0	74.4		67.1	72.4	51.6	16.3	20.2	10.9	14.6	23.1	11.4
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.59	1.35	0.55
Incremental Delay, d2	7.0	19.4		112.1	7.8	0.0	0.1	0.8	0.0	0.0	1.00	0.33
Delay (s)	66.0	93.8		179.2	80.2	51.6	16.4	21.0	10.9	23.2	32.3	6.5
Level of Service	E	F		F	F	D D	В	C C	В	23.2 C	02.5 C	0.5 A
Approach Delay (s)		85.5			118.2	D		17.8	В	C	24.7	^
Approach LOS		F			F			В			C C	
Intersection Summary												
HCM 2000 Control Delay	7.35,-		53.7	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.66									
Actuated Cycle Length (s)			190.0	Si	ım of los	t time (s)			24.0			
Intersection Capacity Utiliza	ation		81.9%			of Service			D			- 1
Analysis Period (min)			15		The state of the s	No. of the last of						
c Critical Lane Group												

1 BL add essence 21 44 2 2 5 5 2 3 3 0 0 0	2 SBTL Lag Yes Max 93 48.9% 28 4 2 7 1 3 0 0	3 EBL Lead Yes C-Max 17 8.9% 11 4 2 5 2 3	4 WBTL Lag Yes None 59 31.1% 29 4 2 7 2.5	5 SBL Lead Yes None 21 11.1% 11 4 2 5	6 NBTL Lag Yes Max 93 48.9% 28 4 2 7	7 WBL Lead Yes None 17 8.9% 11 4 2	8 EBTL Lag- Yes None 59 31.1% 29 4 2	
ad es ne 21 % 4 11 4 2 5 2 3 0	Lag Yes Max 93 48.9% 28 4 2 7 1 3 0	Lead Yes C-Max 17 8.9% 11 4 2 5 2	Lag Yes None 59 31.1% 29 4 2 7 2.5	Lead Yes None 21 11.1% 11 4 2 5	Lag Yes Max 93 48.9% 28 4 2	Lead Yes None 17 8.9% 11 4 2	Lag- Yes None 59 31.1% 29 4	
es ne 21 % 4 11 4 2 5 2 3 0	Yes Max 93 48.9% 28 4 2 7 1 3 0 0	Yes C-Max 17 8.9% 11 4 2 5 2 3	Yes None 59 31.1% 29 4 2 7 2.5	Yes None 21 11.1% 11 4 2 5	Yes Max 93 48.9% 28 4 2	Yes None 17 8.9% 11 4 2	Yes None 59 31.1% 29 4	
ne 21	Max 93 48.9% 28 4 2 7 1 3 0 0 0	C-Max 17 8.9% 11 4 2 5 2 3	None 59 31.1% 29 4 2 7 2.5	None 21 11.1% 11 4 2 5	Max 93 48.9% 28 4 2 7	None 17 8.9% 11 4 2	None 59 31.1% 29 4 2	
21 % 4 11 4 2 5 2 3	93 48.9% 28 4 2 7 1 3 0	17 8.9% 11 4 2 5 2 3	59 31.1% 29 4 2 7 2.5	21 11.1% 11 4 2 5	93 48.9% 28 4 2 7	17 8.9% 11 4 2	59 31.1% 29 4 2	
% 4 11 4 2 5 2 3 0	48.9% 28 4 2 7 1 3 0	8.9% 11 4 2 5 2 3	31.1% 29 4 2 7 2.5	11.1% 11 4 2 5	48.9% 28 4 2 7	8.9% 11 4 2	31.1% 29 4 2	
11 4 2 5 2 3 0	28 4 2 7 1 3 0	11 4 2 5 2 3	29 4 2 7 2.5	11 4 2 5	28 4 2 7	11 4 2	29 4 2	
4 2 5 2 3 0	4 2 7 1 3 0	4 2 5 2 3	4 2 7 2.5	4 2 5	4 2 7	4 2	4 2	
2 5 2 3 0	2 7 1 3 0	2 5 2 3	2 7 2.5	2 5	2 7	2	2	
5 2 3 0	7 1 3 0 0	5 2 3	7 2.5	5	7			
2 3 0	1 3 0 0	2	2.5		7			
2 3 0	3 0 0	2					- 1	
3	0	3			1	2	2.5	
	0	0	0	3	3	3	3	
0			0	0	0	0	0	
		0	0	0	0	0	0	
	7		7		7		7	
	15		16		15		16	
lo	Yes	No	Yes	No	Yes	No	Yes	
es	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
5	106	9	26	85	106	9	26	
16	9	26	85	106	9	26	85	
0	3	20	79	100	3	20	79	
0	178	20	63	100	178	20	63	
5	86	179	6	65	86	179	6	
0	173	0	59	80	173	0	59	
0	158	0	43	80	158	0	43	
		190						
tuate	ed-Coor	dinated						
		80						
ase 3	B:EBL, S	tart of Ye	llow					
t&R	Red Rd						1	
					3	000 10	1 04	
	375				17		59 s	
							A	
						▼ /Ø7	→ Ø8	
		ase 3:EBL, S		ase 3:EBL, Start of Yellow		St & Red Rd	St & Red Rd	St & Red Rd

	1	-	1	1	4	1	1	†	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	1	1>		19	1	7"	7	^	7"	1/2	^	7
Traffic Volume (vph)	123	241	53	190	265	24	80	343	146	78	528	212
Future Volume (vph)	123	241	53	190	265	24	80	343	146	78	528	212
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	0.98		1.00	1.00	0.98	1.00	1.00	0.94	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	0.96	1.00	1.00
Frt	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1780	1789		1787	1881	1571	1787	1881	1509	1721	1881	1532
FIt Permitted	0.48	1.00		0.18	1.00	1.00	0.31	1.00	1.00	0.47	1.00	1.00
Satd. Flow (perm)	891	1789		342	1881	1571	592	1881	1509	845	1881	1532
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	126	246	54	194	270	24	82	350	149	80	539	216
RTOR Reduction (vph)	0	4	0	0	0	16	0	0	50	0	0	72
Lane Group Flow (vph)	126	296	0	194	270	8	82	350	99	80	539	144
Confl. Peds. (#/hr)	6		26	26	- 10	6	27		49	49		27
Turn Type	pm+pt	NA	10	pm+pt	NA	custom	pm+pt	NA	custom	pm+pt	NA	custom
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases	8			4		14	6		76	2		32
Actuated Green, G (s)	46.2	38.3		63.4	49.5	63.5	108.7	100.7	125.8	108.5	100.6	114.5
Effective Green, g (s)	46.2	38.3		63.4	49.5	63.5	108.7	100.7	125.8	108.5	100.6	114.5
Actuated g/C Ratio	0.24	0.20		0.33	0.26	0.33	0.57	0.53	0.66	0.57	0.53	0.60
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	2.0	2.5		2.0	2.5		2.0	1.0		2.0	1.0	
Lane Grp Cap (vph)	253	360		259	490	525	389	996	999	518	995	923
v/s Ratio Prot	0.02	c0.17		c0.08	0.14		c0.01	0.19		0.01	c0.29	
v/s Ratio Perm	0.10			0.17		0.01	0.11		0.07	0.08		0.09
v/c Ratio	0.50	0.82		0.75	0.55	0.02	0.21	0.35	0.10	0.15	0.54	0.16
Uniform Delay, d1	60.8	72.6		50.3	60.7	42.3	21.3	25.8	11.6	19.0	29.5	16.6
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.30	1.08	0.42
Incremental Delay, d2	1.1	13.7		9.9	1.1	0.0	0.1	1.0	0.0	0.0	1.4	0.2
Delay (s)	61.9	86.3		60.2	61.7	42.3	21.4	26.8	11.6	24.7	33.3	7.1
Level of Service	Е	F		E	E	D	C	C	В	C	C	Α
Approach Delay (s)		79.1			60.2			22.1			25.7	
Approach LOS		Е			E			C			С	
Intersection Summary		2,95			X.	TT.						
HCM 2000 Control Delay			41.8	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.62									
Actuated Cycle Length (s)			190.0			t time (s)			24.0			
Intersection Capacity Utiliza	tion		81.9%	IC	U Level	of Service	Э		D			
Analysis Period (min)			15									
c Critical Lane Group												

	1	4	1	*	1	<₽	1	1	
Phase Number	1	2	3	4	5	6	7	8	
Movement	NBL	SBTL	EBL	WBTL	SBL	NBTL	WBL	EBTL	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	C-Max	None	None	Max	None	None	
Maximum Split (s)	16	95	14	65	16	95	28	51	
Maximum Split (%)	8.4%	50.0%	7.4%	34.2%	8.4%	50.0%	14.7%	26.8%	
Minimum Split (s)	11	28	11	29	11	28	11	29	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	5	7	5	7	5	7	5	7	
Vehicle Extension (s)	2	1	2	2.5	2	1	2	2.5	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		7	-	7		7		7	
Flash Dont Walk (s)		15		16		15		16	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	91	107	12	26	91	107	12	40	
End Time (s)	107	12	26	91	107	12	40	91	
Yield/Force Off (s)	101	6	20	85	101	6	34	85	
Yield/Force Off 170(s)	101	181	20	69	101	181	34	69	
Local Start Time (s)	71	87	182	6	71	87	182	20	
Local Yield (s)	81	176	0	65	81	176	14	65	
Local Yield 170(s)	81	161	0	49	81	161	14	49	
Intersection Summary									
Cycle Length			190						
Control Type	Actu	ated-Coo							
Natural Cycle			80						
Offset: 20 (11%), Reference	ed to phase	3:EBL, 5	Start of Ye	ellow					
Splits and Phases: 6: SW	72nd St &	Ped Pd							
opins and Filases. 0. 5vv	72110 51 6	i Neu Nu		-		1.0	4	4	
Ø1 ▼ Ø2						~	Ø3 (R		
16 s 95 s						14:		S	
Ø5 Ø6						4	07		→ 1⊘8
10.4						50		-	

Intersection							
Int Delay, s/veh	0						
Movement	SEL	SER	NEL	NET	SWT	SWR	
Lane Configurations	141			^	^		
Traffic Vol, veh/h	0	1	0	238	139	0	
Future Vol, veh/h	0	1	0	238	139	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	2007	None		CONTRACTOR	- The second	None	
Storage Length	0	-		-		-	
Veh in Median Storage, #	0	-	- 1	0	0	-	
Grade, %	0			0	0		
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mymt Flow	0	1	0	259	151	0	
	7					7	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	410	151	-	0	-	0	
Stage 1	151			ŭ			
Stage 2	259	_		-	_	- 2	
Critical Hdwy	6.42	6.22				2	
Critical Hdwy Stg 1	5.42	0.22				_	
Critical Hdwy Stg 2	5.42						
Follow-up Hdwy	3.518	3.318		-			
Pot Cap-1 Maneuver	598	895	0			0	
	877	- 090	0		-	0	
Stage 1	784		0			0	
Stage 2	704		U			U	
Platoon blocked, %	598	895		-			
Mov Cap-1 Maneuver	598			-		-	
Mov Cap-2 Maneuver							
Stage 1	877	*		-	*	-	
Stage 2	784		7				
Approach	SE		NE		SW		
HCM Control Delay, s	9		0		0		
HCM LOS	A		U		U		
HCIVI LOS	^						
Minor Lane/Major Mvmt	NET SEL	1 SWT					
Capacity (veh/h)	- 89						
HCM Lane V/C Ratio	- 0.00						
HCM Control Delay (s)	0.00	9 -					
HCM Lane LOS		A -					
HCM 95th %tile Q(veh)		0 -					
TOWN COLLY TOURS CE(VOIT)							

Intersection							
Int Delay, s/veh).1						
Movement	SEL	SER	NEL	NET	SWT	SWR	
Lane Configurations	W/			^	^		
Traffic Vol, veh/h	2	4	0	302	161	0	
Future Vol, veh/h	2	4	0	302	161	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized		None		None		None	
Storage Length	0	-		-		÷	
Veh in Median Storage, #	0	-	-	0	0		
Grade, %	0	-		0	0	4	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	1	1	1	1	1	1	
Mvmt Flow	2	4	0	328	175	0	
Major/Minor	Minor2	. 74. 7	Major1	THE	Major2		
Conflicting Flow All	503	175	-	0	-	0	
Stage 1	175	-		-			
Stage 2	328	-		-		-	
Critical Hdwy	6.41	6.21	-	-			
Critical Hdwy Stg 1	5.41	-	-	-		-	
Critical Hdwy Stg 2	5.41			-			
Follow-up Hdwy	3.509	3.309		-			
Pot Cap-1 Maneuver	530	871	0	-		0	
Stage 1	858	-	0	-		0	
Stage 2	732		0	-		0	
Platoon blocked, %							
Mov Cap-1 Maneuver	530	871	-	_		4	
Mov Cap-2 Maneuver	530	-		-		-	
Stage 1	858	-		2		-	
Stage 2	732	-	-				
Approach	SE		NE		SW		
HCM Control Delay, s	10.1		0		0		
HCM LOS	В						
Minor Lane/Major Mvmt	NET SELn1	SWT					
Capacity (veh/h)	- 717	-					
HCM Lane V/C Ratio	- 0.009	-					
HCM Control Delay (s)	- 10.1	-					
HCM Lane LOS	- B	-					
HCM 95th %tile Q(veh)	- 0						

Intersection							
Int Delay, s/veh	2.8						
Movement	SEL	SER	NEL	NET	SWT	SWR	
Lane Configurations	W			4	^>		
Fraffic Vol, veh/h	48	19	72	187	132	38	
uture Vol, veh/h	48	19	72	187	132	38	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized		None	100	ATTENDED OF THE PARTY OF	The state of the s	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	
Storage Length	0	-	-	-		-	
Veh in Median Storage, #	0	-		0	0		
Grade, %	0	-	-	0	0		
Peak Hour Factor	95	95	95	95	95	95	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	51	20	76	197	139	40	
Major/Minor	Minor		Majord		Malayo		
Major/Minor	Minor2	450	Major1	^	Major2	^	
Conflicting Flow All	507	159	179	0		0	
Stage 1	159			-		-	
Stage 2	348	0.00	4.40				
Critical Hdwy	6.42	6.22	4.12			- 1	
Critical Hdwy Stg 1	5.42		-				
Critical Hdwy Stg 2	5.42	2.240	0.040	-			
Follow-up Hdwy	3.518	3.318	2.218			-	
Pot Cap-1 Maneuver	525	886	1397	-			
Stage 1	870	-		-	•	,	
Stage 2	715						
Platoon blocked, %	100	000	4007	-			
Mov Cap-1 Maneuver	493	886	1397	-		*	
Mov Cap-2 Maneuver	493			-		-	
Stage 1	870			-		*	
Stage 2	671			÷	-	•	
Approach	SE		NE		SW		200 E
-ICM Control Delay, s	12.3		2.1		0		
HCM LOS	В						
Minor Lane/Major Mvmt	NEL	NET SELn1	SWT SWR				
Capacity (veh/h)	1397	- 564					
CM Lane V/C Ratio	0.054	- 0.125					
HCM Control Delay (s)	7.7	0 12.3					
HCM Lane LOS	Α	A B					
HCM 95th %tile Q(veh)	0.2	- 0.4					

Intersection							4.70
	0.3						
Movement	SEL	SER	NEL	NET	SWT	SWR	
Lane Configurations	W			4	1>		
Traffic Vol, veh/h	182	71	167	115	147	86	
Future Vol, veh/h	182	71	167	115	147	86	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	198	None	119	None		None	
Storage Length	0	-	_	-	-		
Veh in Median Storage, #	0	-		0	0	-	
Grade, %	0	-	-	0	0		
Peak Hour Factor	95	95	95	95	95	95	
Heavy Vehicles, %	1	1	1	1	1	1	
Mvmt Flow	192	75	176	121	155	91	
Major/Minor	Minor2		Major1		Major2	E avist.	
Conflicting Flow All	673	200	245	0	-	0	
Stage 1	200		-	-			
Stage 2	473	-	-				
Critical Hdwy	6.41	6.21	4.11	-		_	
Critical Hdwy Stg 1	5.41	-		-	-	-	
Critical Hdwy Stg 2	5.41	-	*	-			
Follow-up Hdwy	3.509	3.309	2.209	-	_	-	
Pot Cap-1 Maneuver	422	843	1327		-	-	
Stage 1	836			-			
Stage 2	629		-	-			
Platoon blocked, %				-			
Mov Cap-1 Maneuver	362	843	1327		-		
Mov Cap-2 Maneuver	362	-		_		+	
Stage 1	836				-		
Stage 2	540					-	
Approach	SE		NE		SW		
HCM Control Delay, s	25.9		4.8		0		
HCM LOS	D						
37 100 15 22 23							
Minor Lane/Major Mvmt	NEL	NET SELn1	SWT SWR				
Capacity (veh/h)	1327	- 431					
HCM Lane V/C Ratio	0.132	- 0.618					
HCM Control Delay (s)	8.1	0 25.9					
HCM Lane LOS	Α	A D					
IOW Lane LOS	^	, ,					

Movement	Intersection Int Delay, s/veh	0.3							
Lane Configurations		0.0							
Traffic Vol, veh/h		-		SER	NWI			NER	
Future Vol, veh/h							JA,		
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
Sign Control Free Free Free Free Free Free Free Free Free Free Free									
RT Channelized							0	0	
Storage Length			Free	Free	Free	Free	Stop	Stop	
Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - - Peak Hour Factor 92 93 93 93			-	None		- None	-	None	
Grade, % 0 - - 0 0 - Peak Hour Factor 92			-	-			0	-	
Peak Hour Factor 92 93 93 93 93 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94			0	-		- 0	0		
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2									
Mymt Flow 187 2 7 112 1 2 Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 189 0 313 188 Stage 1 - - - 188 - Stage 2 - - - 125 - Critical Hdwy - - 4.12 - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - - Critical Hdwy Stg 2 - - - 5.42 - - Follow-up Hdwy - - 2.218 - 3.518 3.318 Pot Cap-1 Maneuver - - 1385 - 680 854 Stage 1 - - - - 901 - Platoon blocked, % - - - 677 854 Mov Cap-2 Maneuver - - - -	Peak Hour Factor		92	92	92	92	92	92	
Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 189 0 313 188 Stage 1 - - - 188 - Stage 2 - - - 125 - Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 1 - - - - 5.42 - Critical Hdwy Stg 2 - - - - 5.42 - Critical Hdwy Stg 2 - - - - 5.42 - Critical Hdwy Stg 2 - - - - 5.42 - Critical Hdwy Stg 2 - - - - 5.42 - Critical Hdwy Stg 2 -	Heavy Vehicles, %		2	2	2	2 2	2	2	
Major/Minor Major1 Major2 Minor1 Conflicting Flow All 0 0 189 0 313 188 Stage 1 - - - 188 - Stage 2 - - - 125 - Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 1 - - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 2 - - - 680 854 Stage 1 - - - - 844 - Stage 1			187	2					
Conflicting Flow All 0 0 189 0 313 188 Stage 1 - - - - 188 - Stage 2 - - - - 125 - Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Follow-up Hdwy - - 2.218 - 3.518 3.318 Pot Cap-1 Maneuver - - 1385 - 680 854 Stage 1 - - - 844 - - Stage 2 - - - 901 - - Mov Cap-1 Maneuver - - - 677 854 Mov Cap-2 Maneuver - - - 677 - Stage 1 - - - 844 - Stage 2 - - - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Conflicting Flow All	Major/Minor		Major1		Major2		Minor1		
Stage 1 - - - 188 - Stage 2 - - - 125 - Critical Hdwy - - 4.12 - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 1 - - - 5.42 - Follow-up Hdwy - - 2.218 - 3.518 3.318 Pot Cap-1 Maneuver - - - - - - - Stage 2 - <				0				188	
Stage 2 - - - - 125 - Critical Hdwy - - 4.12 - 6.42 6.22 Critical Hdwy Stg 1 - - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Follow-up Hdwy - - 2.218 - 3.518 3.318 Pot Cap-1 Maneuver - - 1385 - 680 854 Stage 1 - - - - 901 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver - - 1385 - 677 854 Mov Cap-2 Maneuver - - - 677 854 Mov Cap-2 Maneuver - - - 844 - Stage 1 - - - 896 - Approach SE NW NE HCM Control Delay, s 0 0.4 9.6 HCM Control Delay, s						-			
Critical Hdwy - - 4.12 - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Follow-up Hdwy - - 2.218 - 3.518 3.318 Pot Cap-1 Maneuver - - 1385 - 680 854 Stage 1 - - - - 901 - Platoon blocked, % - - - - - - Mov Cap-1 Maneuver -								-	
Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Follow-up Hdwy - - 2.218 - 3.518 3.318 Pot Cap-1 Maneuver - - 1385 - 680 854 Stage 1 - - - - 844 - Stage 2 - - - - 901 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver - - - - - Mov Cap-2 Maneuver - - - 677 854 Mov Cap-2 Maneuver - - - 844 - Stage 1 - - - 896 - Approach SE NW NE HCM LOS N N N Amount of the company of th			16		4.12	-		6.22	
Critical Hdwy Stg 2 - - - 5.42 - Follow-up Hdwy - - 2.218 - 3.518 3.318 Pot Cap-1 Maneuver - - 1385 - 680 854 Stage 1 - - - 901 - Stage 2 - - - 901 - Platoon blocked, % - - - - Mov Cap-1 Maneuver - - - 677 854 Mov Cap-2 Maneuver - - - 677 - Stage 1 - - - 844 - Stage 2 - - - 896 - Approach SE NW NE HCM Control Delay, s Output NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385			-					-	
Follow-up Hdwy 2.218 - 3.518 3.318 Pot Cap-1 Maneuver 1385 - 680 854 Stage 1 844 - Stage 2 901 Platoon blocked, % 1385 - 677 854 Mov Cap-1 Maneuver 1385 - 677 854 Mov Cap-2 Maneuver 677 - Stage 1 844 - Stage 2 896 Approach SE NW NE HCM Control Delay, s 0 0.4 9.6 HCM LOS A Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 HCM Lane V/C Ratio 0.004 0.005									
Pot Cap-1 Maneuver 1385 - 680 854 Stage 1 844 - 844 Stage 2 901 - 901 - 901 Platoon blocked, % 854 Mov Cap-1 Maneuver - 1385 - 677 854 Mov Cap-2 Maneuver 1385 - 677 854 Mov Cap-2 Maneuver 844 - 844 Stage 1 844 - 896 - 966 Approach SE NW NE HCM Control Delay, s 0 0.4 9.6 HCM LOS A Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 966 HCM Lane V/C Ratio 0.004 0.005 968									
Stage 1 - - - - 844 - Stage 2 - - - - - - Platoon blocked, % -			-						
Stage 2 - - - 901 - Platoon blocked, % - - - - Mov Cap-1 Maneuver - - 1385 - 677 854 Mov Cap-2 Maneuver - - - 677 - Stage 1 - - - 844 - Stage 2 - - - 896 - Approach SE NW NE HCM Control Delay, s 0 0.4 9.6 HCM LOS A Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 - - - HCM Lane V/C Ratio 0.004 0.005 - - -			_		,000				
Platoon blocked, % - - - Mov Cap-1 Maneuver - - 1385 - 677 854 Mov Cap-2 Maneuver - - - 677 - Stage 1 - - - 844 - Stage 2 - - - 896 - Approach SE NW NE HCM Control Delay, s 0 0.4 9.6 HCM LOS A Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 - - - HCM Lane V/C Ratio 0.004 0.005 - - -			-	-					
Mov Cap-1 Maneuver - - 1385 - 677 854 Mov Cap-2 Maneuver - - - - 677 - Stage 1 - - - - 844 - Stage 2 - - - - 896 - Approach Below Control Delay, s Output Below Control Delay, s Output A Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 HCM Lane V/C Ratio Output Output Output Output Delay, s Output Output							001		
Mov Cap-2 Maneuver - - - 677 - Stage 1 - - - 844 - Stage 2 - - - 896 - Approach SE NW NE HCM Control Delay, s 0 0.4 9.6 HCM LOS A Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 HCM Lane V/C Ratio 0.004 0.005			_	-	1385		677	854	
Stage 1 - - - - 844 - Stage 2 - - - 896 - Approach SE NW NE HCM Control Delay, s 0 0.4 9.6 HCM LOS A Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 - - - HCM Lane V/C Ratio 0.004 0.005 - - -								004	
Stage 2 - - - - 896 - Approach SE NW NE HCM Control Delay, s 0 0.4 9.6 HCM LOS A Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 - - - HCM Lane V/C Ratio 0.004 0.005 - - -									
Approach									
HCM Control Delay, s 0 0.4 9.6 HCM LOS A Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 HCM Lane V/C Ratio 0.004 0.005	Olage Z						090		
HCM Control Delay, s 0 0.4 9.6 HCM LOS A Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 HCM Lane V/C Ratio 0.004 0.005	Approach		SE		NW		NF		
Minor Lane/Major Mvmt NELn1 NWL NWT SET SER Capacity (veh/h) 786 1385 - - - HCM Lane V/C Ratio 0.004 0.005 - - -			_						
Minor Lane/Major Mvmt			U		0,4				
Capacity (veh/h) 786 1385	IOM EOO						^		
Capacity (veh/h) 786 1385 HCM Lane V/C Ratio 0.004 0.005	Minor Lane/Major Mymt	NFI n1	NWI	NWT	SET SER				
HCM Lane V/C Ratio 0.004 0.005									
HCM Control Delay (s) 9.6 7.6 0						_			
HCM Lane LOS A A A									
HCM 95th %tile Q(veh) 0 0									

Intersection								
Int Delay, s/veh 0	.6							
Movement		SET	SER	NWI	NWT	NEL	NER	
Lane Configurations		î»			4	γķ		
Traffic Vol, veh/h		167	6	13		6	7	
Future Vol, veh/h		167	6	13	187	6	7	
Conflicting Peds, #/hr		0	0	(0	0	
Sign Control		Free	Free	Free	Free	Stop	Stop	
RT Channelized			None		None		None	
Storage Length			-			0	-	
Veh in Median Storage, #		0	-	100	0	0		
Grade, %		0	-		. 0	0	-	
Peak Hour Factor		92	92	92		92	92	
Heavy Vehicles, %		1	1	1		1	1	
Mvmt Flow		182	7	14		7	8	
		,,,,,			200	· · · · · · · · · · · · · · · · · · ·		
Major/Minor		Major1		Major2		Minor1		
Conflicting Flow All		0	0	188		417	185	
Stage 1						185		
Stage 2		-	-			232	-	
Critical Hdwy		-	- 12	4.11	-	7.11	6.21	
Critical Hdwy Stg 1			-			6.11	-	
Critical Hdwy Stg 2		_				6.11		
Follow-up Hdwy		-	-	2.209		3.509	3.309	
Pot Cap-1 Maneuver			- 12	1392		548	860	
Stage 1			-			819	-	
Stage 2			-		-	773	10.2	
Platoon blocked, %						170		
Mov Cap-1 Maneuver				1392		543	860	
Mov Cap-2 Maneuver				1002		543	000	
Stage 1						819		
Stage 2		_	-			764		
Olage Z						704		
Approach		SE		NW		NE		
HCM Control Delay, s		0		0.5		10.4		
HCM LOS						В		
Minor Lane/Major Mvmt	NELn1	NWL	NWT	SET SER				
Capacity (veh/h)	677	1392						
HCM Lane V/C Ratio	0.021	0.01						
HCM Control Delay (s)	10.4	7.6	0					
HCM Lane LOS	В	Α	Α					
HCM 95th %tile Q(veh)	0.1	0						
OW SOUL WING COVERN	0.1	U						

	20	4		4	
Phase Number	1	2	6	8	
Movement	EBL	WBT	EBTL	SBL	
Lead/Lag	Lead	Lag			
Lead-Lag Optimize	Yes	Yes			
Recall Mode	Max	Max	Max	Max	
Maximum Split (s)	10	50	60	25	
Maximum Split (%)	11.8%	58.8%	70.6%	29.4%	
Minimum Split (s)	9.5	23	23	23	
Yellow Time (s)	3	4	4	4	
All-Red Time (s)	0	1	1	1	
Minimum Initial (s)	5	15	15	7	
Vehicle Extension (s)	2	1	1	2.5	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)					
Flash Dont Walk (s)					
Dual Entry	No	Yes	Yes	Yes	
nhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	22.5	32.5	22.5	82.5	
End Time (s)	32.5	82.5	82.5	22.5	
rield/Force Off (s)	29.5	77.5	77.5	17.5	
/ield/Force Off 170(s)	29.5	77.5	77.5	17.5	
ocal Start Time (s)	30	40	30	5	
ocal Yield (s)	37	0	0	25	
ocal Yield 170(s)	37	0	0	25	
ntersection Summary					
Cycle Length			85		
Control Type		F	retimed		
Natural Cycle			60		
Offset: 77.5 (91%), Referen	ced to pha	se 2:WB1	and 6:El	BTL, Start	of Yellow
Splits and Phases: 5: SV	72nd St 8	Yumuri S	St		
JA 4					
D1 D2 (F	(3)				
10 s 50 s	No. of Contract, Name of Street, or other parts of the Contract of the Contrac				
→Ø6 (R)					▼ Ø8
50 s					25 s

	1	4//	2	*	1	<\↑	10	4	
Phase Number	1	2	3	4	5	- 6	7	8	
Movement	NBL	SBTL	EBL	WBTL	SBL	NBTL	WBL	EBTL	
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag	
Lead-Lag Optimize	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Max	C-Max	None	None	Max	None	None	
Maximum Split (s)	21	93	17	59	21	93	17	59	
Maximum Split (%)	11.1%	48.9%	8.9%	31.1%	11.1%	48.9%	8.9%	31.1%	
Minimum Split (s)	11	28	11	29	11	28	11	29	
Yellow Time (s)	4	4	4	4	4	4	4	4	
All-Red Time (s)	2	2	2	2	2	2	2	2	
Minimum Initial (s)	5	7	5	7	5	7	5	7	
Vehicle Extension (s)	2	1	2	2.5	2	1	2	2.5	
Minimum Gap (s)	3	3	3	3	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	0	0	0	0	
Time To Reduce (s)	0	0	0	0	0	0	0	0	
Walk Time (s)		7		7		7		7	
Flash Dont Walk (s)		15		16		15		16	
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Start Time (s)	85	106	9	26	85	106	9	26	
End Time (s)	106	9	26	85	106	9	26	85	
Yield/Force Off (s)	100	3	20	79	100	3	20	79	
Yield/Force Off 170(s)	100	178	20	63	100	178	20	63	
Local Start Time (s)	65	86	179	6	65	86	179	6	
Local Yield (s)	80	173	0	59	80	173	0	59	
Local Yield 170(s)	80	158	0	43	80	158	0	43	
ntersection Summary									
Cycle Length			190						
Control Type	Actu	ated-Coo	rdinated						
Natural Cycle			80						
			Start of Ye	11					

Appendix E Background Growth Rate

Riviera Plaza

Background Growth Rate

Station	Location	2010	2011	2012	2013	2014
0034	0034 SR 959 / RED RD / SW 57 AV, 200' N SR 5 / US-1		24,500	23,500	21,400	23,500
0127	0127 SR 5 / US-1, 400' E OF SW 57 AVE.		79,500	82,000	74,000	79,500
9800 SR 5 / US-1, 200' S GRANADA BLVD @R - 178		83,500	81,500	77,500	74,000	78,500
7015	GRANADA BLVD. 600 FT EAST OF US1	4,100	4,300	4,300	3,800	3,800
	Total	186,600	189,800	187,300	173,200	185,300
	Yearly Growth		1.7%	-1.3%	-7.5%	7.0%
	Growth Trend					0.0%

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2014 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 0034 - SR 959/RED RD/SW 57 AV, 200' N SR 5/US-1

YEAR	AADT	DIREC	CTION 1	DI	RECTION 2	*K F	ACTOR	D FA	CTOR	T FACTOR	į
2014	23500 C	N 11	1500	s	12000		9.00		9.30	6.90	,
2013	21400 C		9400	s	12000		9.00		8.90	5.40	
2012	23500 C	N 13	1000	S	12500		9.00	5	9.70	10.00	
2011	24500 C	N 11	L500	S	13000		9.00	5	8.20	3.20)
2010	22000 C	N 11	L500	S	10500		7.87	5	8.27	3,20	J
2009	23000 C	N 11	L500	S	11500		7.98	5	9.96	4.50	J
2008	23500 F	N 12	2000	S	11500		8.07	6	6.31	5.80	J
2007	23500 C	N 12	2000	S	11500		7.90	6	3.12	5.80)
2006	22500 C	N 10	500	S	12000		7.39	5	8.66	13.10)
2005	20500 C	N 10	0000	S	10500		7.70	6	5.70	11.90)
2004	20400 C	N 9	9900	S	10500		8.20	6	7.10	11.90)
2003	22000 C	N 11	.000	S	11000		8.10	7	2.30	3.30)
2002	22500 C	N 11	.500	S	11000		9.20	6	8.00	3.60)
2001	19400 C	N 9	400	S	10000		8.20	5	3.50	2.40)
2000	23500 C	N 11	.500	S	12000		8.20	5	3.10	3.00)
1999	22000 C	N 10	500	S	11500		9.10	5	2.70	2.30)

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2014 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 0127 - SR 5/US-1, 400' E OF SW 57 AVE.

YEAR	AADT	DIRECTION 1	DIRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2014	79500 C	N 39000	S 40500	9.00	59.30	3.40
2013	74000 C	N 37500	S 36500	9.00	58.90	5.00
2012	82000 C	N 41000	S 41000	9.00	59.70	5.10
2011	79500 C	N 40000	S 39500	9.00	58.20	3.90
2010	77000 C	N 39000	S 38000	7.87	58.27	4.30
2009	78000 C	N 39000	S 39000	7.98	59.96	4.90
2008	82000 C	N 41500	S 40500	8.07	66.31	3.70
2007	82500 C	N 42000	S 40500	7.90	63.12	3.50
2006	79000 C	N 40000	S 39000	7.39	58.66	8.00
2005	81000 C	N 41500	S 39500	7.70	65.70	5.50
2004	92500 C	N 48500	S 44000	8,20	67.10	4.90
2003	89000 C	N 45000	S 44000	8.10	72.30	3.40
2002	84000 C	N 44000	S 40000	9.20	68.00	4.30
2001	87500 C	N 42000	S 45500	8.20	53.50	3.00
2000	81500 C	N 42500	S 39000	8.20	53.10	3,20
1999	76500 C	N 39500	S 37000	9.10	52.70	4.90

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2014 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 7015 - GRANADA BLVD. 600 FT EAST OF US1

YEAR	AADT	DIRECTION 1	DIRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2014	3800 F	E 1800	W 2000	9.00	59.30	44.50
2013	3800 C	E 1800	W 2000	9.00	58.90	44.50
2012	4300 F	E 2200	W 2100	9.00	59.70	5.10
2011	4300 C	E 2200	W 2100	9.00	58.20	3.90
2010	4100 F	E 2000	W 2100	7.87	58,27	4.30
2009	4100 C	E 2000	W 2100	7.98	59.96	4.90

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2014 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 9800 - SR 5/US-1, 200' S GRANADA BLVD @R-178

YEAR	AADT	DIRECTION 1	DIRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2014	78500 C	N 40500	S 38000	9.00	59.30	4.40
2013	74000 C	N 40000	S 34000	9.00	58.90	4.80
2012	77500 C	N 39500	S 38000	9.00	59.70	3.80
2011	81500 C	N 42000	S 39500	9.00	58.20	5.70
2010	83500 C	N 43000	S 40500	7.87	58.27	5.70
2009	78000 C	N 38500	S 39500	7.98	59.96	5.20
2008	77000 C	N 39000	S 38000	8.07	66.31	5.40
2007	76500 C	и 36000	S 40500	7.90	63,12	5.30
2006	80500 C	N 40000	S 40500	7.39	58.66	4.00
2005	79500 C	ท 39500	S 40000	7.70	65.70	7.20
2004	86000 C	N 46500	S 39500	8,20	67.10	7.20
2003	81500 C	ท 38500	S 43000	8.10	72.30	2.30
2002	80000 C	N 38500	S 41500	9.20	68.00	3.00
2001	86000 C	N 45500	S 40500	8.20	53.50	2.80
2000	78000 C	N 40000	S 38000	8.20	53.10	2.80
1999	78500 C	N 40000	S 38500	9.10	52.70	2.40

Appendix F Committed Development Information

7.0 UHG TRIP GENERATION

The UHG will include various medical related uses and activities. The UHG will devote a substantial amount of low intensity space for imaging, more intense space for urgent care and clinic services, and additional medical services that fall more into the general medical office use such as sports clinics, rehabilitation, student health, a prescription center, and other varied medical services. The prescription center housed in the UHG will be for internal use. This combination of uses provides a diversity of trip generation sources. UHG's area allocation of the floor space for each use (in square feet) is shown in detail in **Table 2-1**.

The AM and PM peak hour trip estimates for the proposed UHG were determined based on the trip rates and/or formulas provided in the Institute of Transportation Engineers' (ITE) *Trip Generation*, 9^{th} *Edition*. For trip generation estimation purposes, the UHG uses presented in **Table 2-1** were consolidated into similar trip generating groups. The Medical Office uses were consolidated with the Surgery/Imaging use; whereas, the Clinic use was maintained as a separate use. Furthermore, the Lobby space was proportionately distributed between the Medical Office/Surgery-Imaging and Clinic uses. **Table 7-1** summarizes the final UHG use/space allocation for trip generation.

Table 7-1
UHG Use Allocation for Trip Generation

UHG USE	Gross Floor Area (square feet)	Total Net Area UHG (square feet)	Percent (%) Gross Floor Area	Percent (%) Gross Floor Area w/o Mechanical	Proportionate Lobby Area (square feet)	Area per UHG
Office + Imagery	99,271		54.3%	58.5%	15,310	114,581
Clinic	64,827		35.5%	38.2%	9,998	74,825
Student Health (1)	5,666		3.1%	3.3%	874	6,540
Mechanical Area (2)	12,927		7.1%			12,927
Total Use Gross Area	182,691		100.0%	100,0%		
Gross Area minus Mechanical	169,764					
Total Lobby Space	26,181					
Total Net (Gross Area plus Lobb	oy Space) (3)	208,872				208,872

Notes:

The following ITE land use categories were used to determine trip generation in this analysis:

- #720 Medical-Dental Office Building (including Surgery/Imaging and pharmacy); and
- #630 Clinic (including urgent care).

⁽¹⁾ The existing on-campus Daystar Clinic Health Center currently located at Pavia Street will be relocated to the new UHG facility.

⁽²⁾ The rooftop mechanical room will be covered. No other uses proposed for this level.

⁽³⁾ Total GFA based on latest available Floor Level Distribution information provided by P+W, April 2014.

All UM commuters currently assigned the Ponce de Leon Garage will be reassigned to other parking facilities. As such, the UHG area allocated to the Student Health Service Clinic is deducted from the overall gross area and no trips are assigned for this use.

The UHG building's roof level will have about 12,927 square feet of utility/mechanical space. This use does not generate trips and as such is also deducted from the overall UHG gross floor area. The City of Coral Gables has indicated that this space may be exempted from the parking requirements as well (see **Appendix B**).

Tables 7-2 and **7-3** present, respectively, the AM and PM trip generation calculations based on the UHG facility uses in **Table 7-1**. There are no AM peak hour rates or formula for the Clinic (ITE #630) land use in the ITE's Trip Generation, 8th Edition. As such, the AM peak hour estimate was made assuming an equivalent proportional split between the AM and PM peak hour trips for the Medical Office/Surgery-Imaging use (45 percent).

The following is a summary of the estimated AM and PM peak hour volumes for the UHG:

UHG AM Peak Hour Trips:

UHG PM Peak Hour Trips:

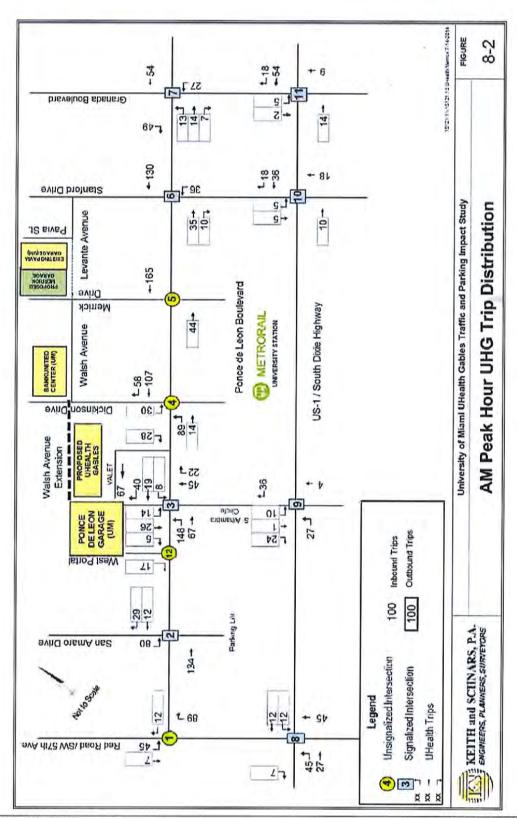
Total	567	Total	681
Inbound	447	Inbound	187
Outbound	120	Outbound	494

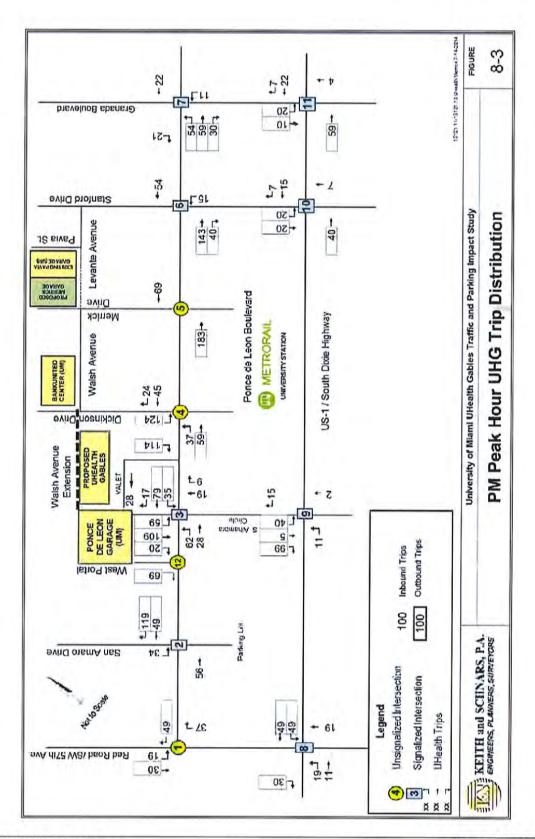
[Remainder of this page intentionally blank]

Table 7-2
UHG AM Peak Hour Trip Generation

Land Use	Area (Square Feet)	ITE Code	Formula or Rate	Total Trips	IN	ОИТ
Medical Offices /Surgery/lmaging	114,580	720	T = 2.39 (X)	274	216	58
Clinic	74,825	630	T = 5.18 (X) (.80) (2)	323	255	68
Mechanical Room	12,927	N/A	No new trips associated with use.(3)	0	0	0
Student Health	6,540	N/A	No new trips associated with use.(4)	0	0	0
Subtotal UHC	208,872			597	471	126
Minus Transit Use -All Pop	ulations (5) @	5.0%	· · · · · · · · · · · · · · · · · · ·	30	24	6
Total UHC AM Peak Hou	r Trips			567	447	120

Notes:

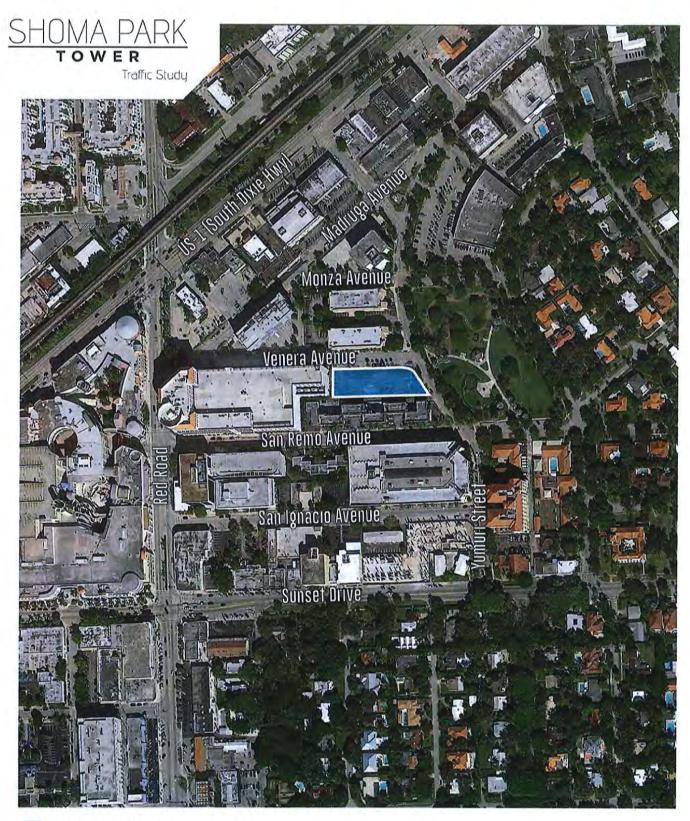

- (1) Area includes proportionate distribution of Lobby Space as shown in Table 7-1.
- (2) Clinic AM Peak Hour trip rate/formula not available in ITE. Used AM/PM ratio (0.80) & in/out split for Medical Office.
- (3) No trips associated with mechanic room/roof level. No office or medical facilities on this level,
- (4) Exisiting UM Campus student health facility to be relocated to UHG. No new trips associated with this use.
- (5) Used 5% transit share as per ITE information (Table B.3 Transportation Impact Factors, Development Around Transit Centers and Light Rail Stations, Trip Generation Handbook, An ITE Proposed Recommended Practice, October 1998): Site on major transit corridor, METRORAIL.


Table 7-3
UHG PM Peak Hour Trip Generation

Land Use	Area (Square Feet)	ITE Code	Formula or Rate	Total Trips	IN	ОПТ
Medical Offices /Surgery/Imaging	114,580	720	Ln(T) = 0.90 Ln(X) + 1.53	329	92	237
Clinic	74,825	630	T = 5.18 (X)	388	105	283
Mechanical Room	12,927	N/A	No new trips associated with use.(2)	0	0	0
Student Health	6,540	N/A	No new trips associated with use.(3)	0	0	0
Subtotal UHC	208,872			717	197	520
Minus Transit Use -All F	Populations (4)		5.0%	36	10	26
Total UHC AM Peak Hour T	Trips .			681	187	494

Notes:

- (1) Area includes proportionate distribution of Lobby Space as shown in Table 7-1.
- (2) No trips associated with mechanic room/roof level. No office or medical facilities on this level.
- (3) Exisiting UM Campus student health facility to be relocarted to UHG. No new trips associated with this use.
- (4) Used 5% transit share as per ITE information (Table B.3 Transportation Impact Factors, Development Around Transit Centers and Light Rail Stations, Trip Generation Handbook, An ITE Proposed Recommended Practice, October 1998): Site on major transit corridor, METRORAIL.



SHOMA PARK TOWER

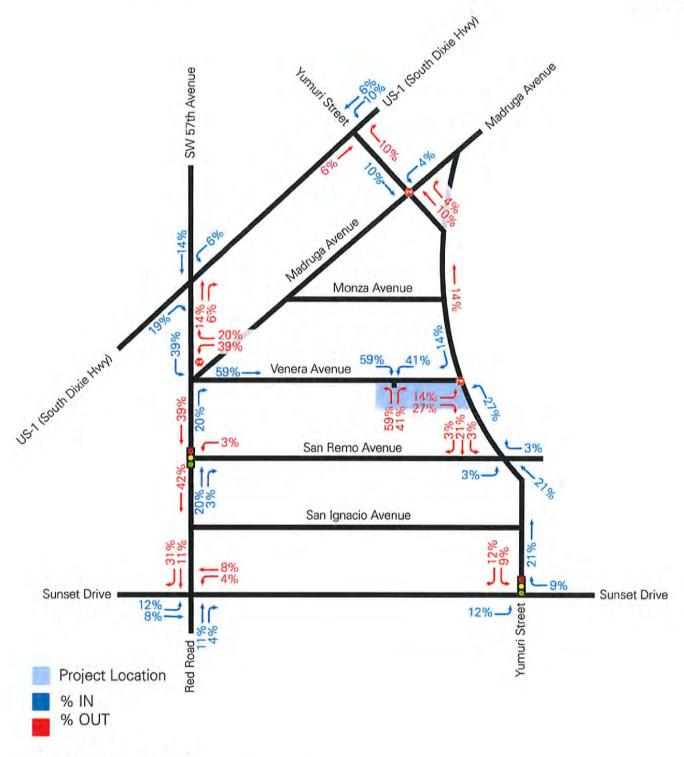
Traffic Study

Project Location

EXHIBIT 1
LOCATION MAP

Exhibit 8 Project Trip Generation Summary

Proposed ITE Land Use	Size/Units	AM Peak Hour Vehicle Trips			PM Peak Hour Vehicle Trips			
Designation ¹		In	Out	Total	In	Out	Total	
Residential Condominium (Land Use 230)	65 DU	6	31	37	28	14	42	
Specialty Retail Center (Land Use 826)	3,401 SF	0	0	0	4	5	19	
Subtotal Gross Tr	ips	6	31	37	32	19	51	
Transit/Pedestrian Trips	10%	-1	-3	-4	-3	-2	-5	
Net External Trips (Pi	oposed)	5	28	33	29	17	46	


Existing ITE Land Use	Size/Units	AM Peak Hour Vehicle Trips			PM Peak Hour Vehicle Trips		
Designation ¹		In	Out	Total	In	Out	Total
Apartment (Land Use 220)	40 DU	5	18	23	26	14	40
Transit/Pedestrian Trips	10%	-0	-2	-2	-3	-1	-4
Net External Trips (Ex	sting)	5	16	21	23	13	36

Proposed Uses	5	28	33	29	17	46
Existing Uses	-5	-16	-21	-23	-13	-36
Net New External Trips	0	12	12	6	4	10

Based on ITE Trip Generation Manual, Ninth Edition,

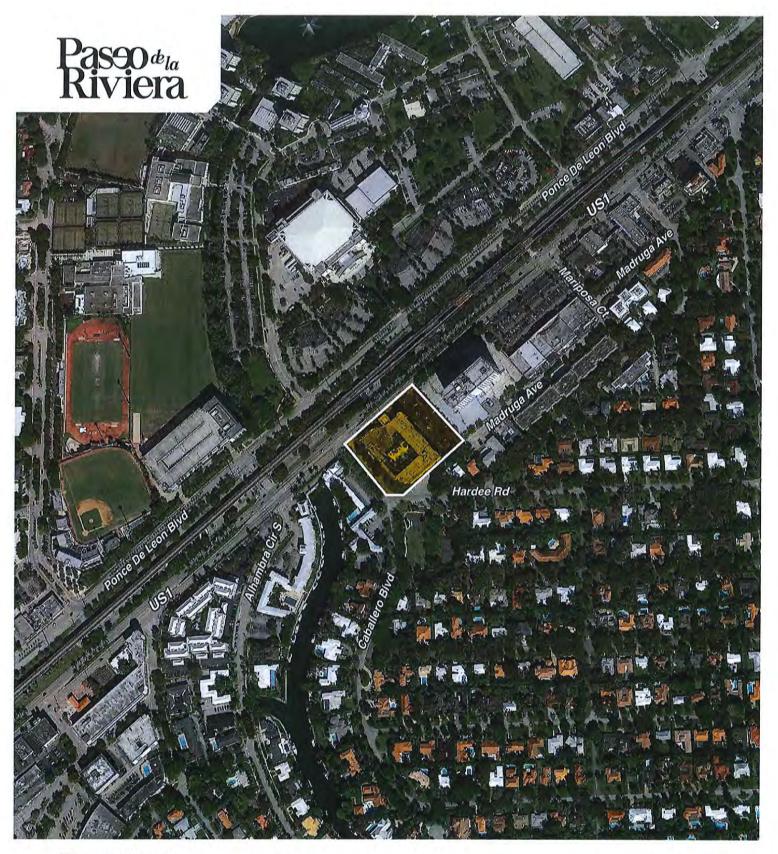


EXHIBIT 10 PROJECT TRIP DISTRIBUTION

Pasode la Riviera

TRAFFIC STUDY

Project Location

EXHIBIT 1

Location Map

Exhibit 10 **Project Trip Generation Summary**

Proposed ITE Land Use	Size/Units		ak Hour Trips	PM Peak Hour Vehicle Trips					
Designation ¹		In	Out	Total	În	Out	Total		
	236 DU	21	50	71	54	38	92		
Apartments (Land Use 223)		$Rate = \frac{0.30 \ trips}{DU}$			$Rate = \frac{0.39 \ trips}{DU}$				
		31% Ir	n 6	9% Out	58%	In 42	2% Out		
YY 1		78	56	134	78	73	151		
Hotel (Land Use310)	252 Rooms	$Rate = \frac{0.53 \ trips}{Rooms}$			Rat	$ate = \frac{0.60 \ trips}{Rooms}$			
		59%In	4	1%Out	51%	In 49	9% Out		
	4,380 SF	0	0	0	22	11	33		
Restaurant (Land Use 931)		-			$Rate = \frac{7.48 \ trips}{1000 \ SF \ GFA}$				
		- In		- Out	67% In	In 33	33% Out		
		0	0	0	17	21	38		
Specialty Retail (Land Use 826)	14,094 SF	-			$Rate = \frac{2.71 \ trip}{1000 \ SF \ G}$				
		- In		- Out	44%	- 1	6%Out		
Subtotal Gross Trips		99	106	205	171	143	314		
Transit Trips	10%	-10	-11	-21	-17	-14	-31		
Pedestrian Trips (Apartment only)	10%	-2	-5	-7	-5	-4	-9		
Internal Capture ²	0% (AM) 12.4% (PM)	0	0	0	-16	-18	-34		
Pass-by Trip ² (Restaurant only)	44%	0	0	0	-10	-5	-15		
Net External Trips (Properties Manual Night Edition	osed)	87	90	177	123	102	225		

¹ Based on ITE <u>Trip Generation Manual</u>, Ninth Edition,
² Based on ITE <u>Trip Generation Manual User's Guide and Handbook</u>, Ninth Edition

Exhibit 10 - continued

Existing ITE Land Use	Size/Units	AM Peak Hour Vehicle Trips			PM Peak Hour Vehicle Trips		
Designation ¹		In	Out	Total	In	Out	Total
Hotel (Land Use 310)	155 Rooms	48	34	82	48	45	93
Transit/Pedestrian Trips	10%	-5	-3	-8	-5	-4	-9
Net External Trips (Ex	isting)	43	31	74	43	41	84

Existing Uses	-43	-31	-74	-43	-41	-84
Net New External Trips	44	59	103	80	61	141

Appendix G Project Trip Generation

Trip Generation Summary

Alternative: Alternative 1

Phase:

Open Date: 10/12/2016 Project: Riviera Plaza Analysis Date: 10/12/2016

	٧	Weekday Average Daily Trips				Weekday AM Peak Hour of Adjacent Street Traffic			Weekday PM Peak Hour of Adjacent Street Traffic			
ITE Land Use	*_	Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total
826 Retail		477	477	954						32	41	73
21.53 Gross Leasable Area 1000 SF												
850 SUPERMARKET 1		2889	2888	5777		119	73	192		273	263	536
56.5 Gross Floor Area 1000 SF												
Unadjusted Volume		3366	3365	6731		119	73	192		305	304	609
nternal Capture Trips		0	0	0		0	0	0		0	0	0
Pass-By Trips		0	0	0		0	0	0		96	96	192
Volume Added to Adjacent Streets		3366	3365	6731		119	73	192		209	208	417

Total Weekday Average Daily Trips Internal Capture = 0 Percent

Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

^{* -} Custom rate used for selected time period.

Trip Generation Summary

Alternative: Alternative 1

 Phase:
 Existing
 Open Date:
 6/22/2016

 Project:
 16180 Riviera Plaza
 Analysis Date:
 6/22/2016

	Weekday AM Peak Hour of Adjacent Street Traffic					Weekday PM Peak Hour of Adjacent Street Traffic			
ITE Land Use		Enter	Exit	Total	*	Enter	Exit	Total	
820 Shopping Center 55.16 Gross Leasable Area 1000 SF		67	41	108		193	209	402	
Unadjusted Volume		67	41	108		193	209	402	
Internal Capture Trips		0	0	0		0	0	0	
Pass-By Trips		0	0	0		68	68	136	
Volume Added to Adjacent Streets		67	41	108		125	141	266	

Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

 $[\]ensuremath{\star}$ - Custom rate used for selected time period.

AM Peak Hour Trip Generation and Internalization

Riviera Plaza

	Land L	market Jse 850) Sq Ft		Retail Cent Use 826 33 SF	er	215 ITE Trips		
	In 119	Out 73	In 14	Out 9				
	-12	-7	-1	-1		-21	10.0% Other Modes	
	107	66	13	8		194	Vehicle Trips	
	U	NBALANCED II	NTERNALIZATI	ON				
		5% 3	7%					
5%		3	7 1	. 7	%			
5	1		7		1			
		0	Specialty F	Retail Cent	er			
	In	Out	In	Out	-			
	107	66	13	8		194	Vehicle Trips	
		BALANCED IN	TERNALIZATIO	N				
		-1	-1					
-1				-1	-			
	-1	-1	-1	-1		-4 Ir	nternal	
	106	65	12	7		190 E	xternal Trips	
		1.2%		9.5%			6 Internal	
	-38	-23			-61	36% S	Supermarket Pass-by	
	68	42	12	7		129 N	let New External Trips	

PM Peak Hour Trip Generation and Internalization

Riviera Plaza

Superma Land Use 56,500 So	850	Land	Retail Center Use 826 33 SF	
In 273	Out 263	In 32	Out 41	609 ITE Trips
-28	-26	-3	-4	-61 10.0% Transit & Ped
245	237	29	37	548 Vehicle Trips
5%	5% 12 1	5%	5%	
Superma	rket		Retail Center	
ln	Out	ln	Out	
245	237	29	37	548 Vehicle Trips
-2	1	-1	-2	
-2	-1	-1	-2	-6 Internal
243 -87	236 <i>0.6%</i> -85	28	35 4.5%	542 External Trips 1.1% % Internal 36% Supermarket Pass-by
156	151	28	35	370 Net New External Trips

DAVID PLUMMER & ASSOCIATES

INTO POWER PROPERTY AND AND A CONTROL OF THE PROPERTY OF THE PARTY OF

Gables Waterway Traffic Analysis Methodology

March 19, 2015

DPA will undertake a Traffic Impact Analysis as required by the City of Coral Gables.

Location: 6100 Caballero Boulevard in Coral Gables, FL.

Existing Site: 20 Residential Units

New residential development consisting of 11 condominium units and 6 townhomes Proposed Plan:

The methodology is outlined below:

The project is proposing less residential units than the existing site. Therefore, the project will conduct a trip generation comparison to demonstrate that the proposed project will have less traffic impact than the existing conditions. The trip generation for the existing and proposed conditions will be estimated using trip generation information published by the Institute of Transportation Engineers (ITE) Trip Generation Manual, 9th Edition.

A Traffic Statement detailing the results of the analysis will be signed and sealed by α Professional Engineer and will be provided to the city.

w 115\15117 methodology docs

Trip Generation Summary

Alternative: Alternative 1

Phase:

Project: Gables Waterway Open Date: 10/11/2016

Analysis Date: 10/11/2016

	Weekday Average Daily Trips					Weekday AM Peak Hour of Adjacent Street Traffic			Weekday PM Peak Hour of Adjacent Street Traffic			
ITE Land Use		Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total
230 CONDO 1		80	79	159		2	12	14		11	5	16
20 Dwelling Units												
Unadjusted Volume		80	79	159		2	12	14		11	5	16
Internal Capture Trips		0	0	0		0	0	0		0	0	0
Pass-By Trips		0	0	0		0	0	0		0	0	0
Volume Added to Adjacent Streets		80	79	159		2	12	14		11	5	16

Total Weekday Average Daily Trips Internal Capture = 0 Percent

Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

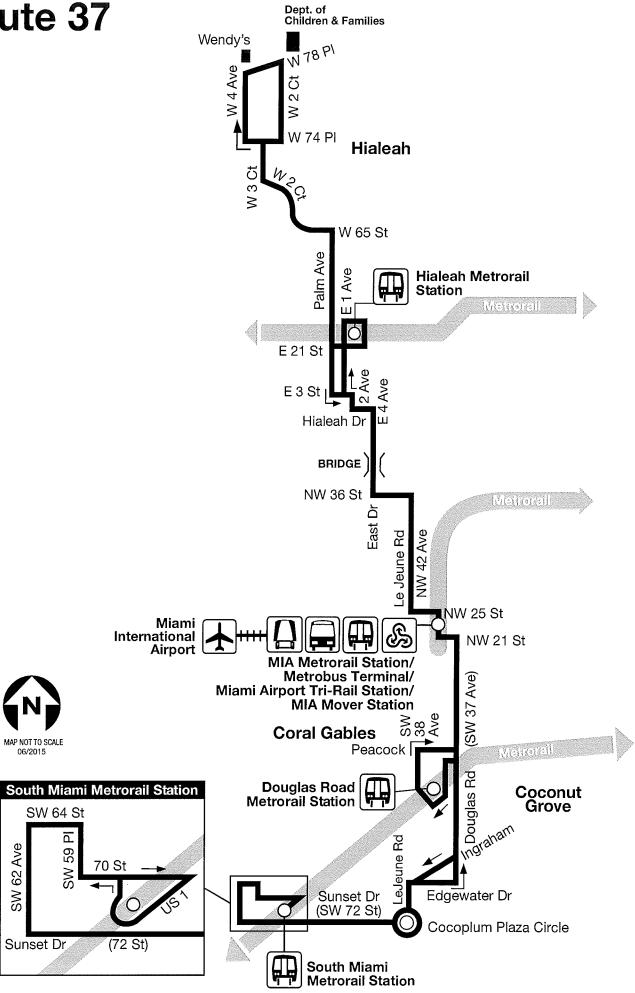
^{* -} Custom rate used for selected time period.

Appendix H Bus Route Information

Miami-Dade County Transportation and Public Works

Routes Schedule

				37 (No	rihbound) W	EEKDAY					
SOUTH MIAMI METRORAIL STATION	SUNSET DRIVE & OLD CUTLER RD	SW 37 AVE & GRAND AVE	DOUGLAS ROAD METRORAIL STATION	Douglas Rd & Coral Way	SW 37 AVE & W FLAGLER ST	Airport Station	NW 36 ST & COOLIDGE DR	HIALEAH DR & E 4 AVE	HIALEAH METRORAIL STATION	PALM AVE & E 49 ST	W 3 CT & 74 PL
05:07AM	05:18AM	05:25AM	05:28AM	05:33AM	05:39AM	05:47AM	05:52AM	05:58AM	06:09AM	06:19AM	06:31AM
05:38AM	05:49AM	05:56AM	05:59AM	06:06AM	06:14AM	06:23AM	06:31AM	06:39AM	06:50AM	07:00AM	07:12AM
06:05AM	06:22AM	06:31AM	06:35AM	06:42AM	06:50AM	06:59AM	07:07AM	07:15AM	07:26AM	07:36AM	07:48AM
06:35AM	06:52AM	07:01AM	07:05AM	07:12AM	07;20AM	07:29AM	07:37AM	07:45AM	07:56AM	08:06AM	08:18AM
07:05AM	07:22AM	07:31AM	07:35AM	07:42AM	07:50AM	07:59AM	08:07AM	08:15AM	08:26AM	08:36AM	08:48AM
07:30AM	07:47AM	07:56AM	08:01AM	08:09AM	08:19AM	08:29AM	08:37AM	08:45AM	08:56AM	09:06AM	09:18AM
07:59AM	08:18AM	08:28AM	08:33AM	08:41AM	08:51AM	09:01AM	09:09AM	09:17AM	09:28AM	09:38AM	09:50AM
08:29AM	08:48AM	08;58AM	09:03AM	09:11AM	09;21AM	09:31AM	09:39AM	09:47AM	09:58AM	10:09AM	10:21AM
08:58AM	09:17AM	09:27AM	09:32AM	09:40AM	09:50AM	10:01AM	10:10AM	10:17AM	10:29AM	10:40AM	10:52AM
09:29AM	09:48AM	09:58AM	10:03AM	10:11AM	10:22AM	10:33AM	10:42AM	10:49AM	11:01AM	11:12AM	11:24AM
10:02AM	10:19AM	10:28AM	10:33AM	10:41AM	10:52AM	11:03AM	11:12AM	11:19AM	11:31AM	11:42AM	11:54AM
10:32AM	10:49AM	10:58AM	11:03AM	11:11AM	11:22AM	11:33AM	11:42AM	11:49AM	12:01PM	12:12PM	12:24PM
11:02AM	11:19AM	11:28AM	11:33AM	11:41AM	11:52AM	12:03PM	12:12PM	12:19PM	12:31PM	12:42PM	12:54PM
11:32AM	11:49AM	11:58AM	12:03PM	12:11PM	12:22PM	12:33PM	12:42PM	12:49PM	01:01PM	01:12PM	01:24PM
12:02PM	12:19PM	12:28PM	12:33PM	12:41PM	12:52PM	01:03PM	01:12PM	01:19PM	01:31PM	01:42PM	01:54PM
12:32PM	12:49PM	12:58PM	01:03PM	01:11PM	01:22PM	01:33PM	01:42PM	01;49PM	02:01PM	02:12PM	02:24PM
01:02PM	01:19PM	01:28PM	01:33PM	01:41PM	01:52PM	02:03PM	02:12PM	02:19PM	02:31PM	02;42PM	02:54PM
01:32PM	01:49PM	01:58PM	02:03PM	02:11PM	02:22PM	02:33PM	02:42PM	02:49PM	03:01PM	03:12PM	03:26PM
02:02PM	02:19PM	02:28PM	02:33PM	02:41PM	02:52PM	03:03PM	03:12PM	03:20PM	03:32PM	03:43PM	03:57PM
02:33PM	02:50PM	02:59PM	03:04PM	03:13PM	03:24PM	03:35PM	03:44PM	03:52PM	04:04PM	04:16PM	04:30PM
03:00PM	03:19PM	03:30PM	03:35PM	03:44PM	03:55PM	04:07PM	04:17PM	04:26PM	04:37PM	04:49PM	05:03PM
03:30PM	03:49PM	04:00PM	04:05PM	04:14PM	04:27PM	04:39PM	04:49PM	04:58PM	05:09PM	05:21PM	05:35PM
04:02PM	04:21PM	04:31PM	04:36PM	04:45PM	04:58PM	05:10PM	05:20PM	05:29PM	05:40PM	05:52PM	06:06PM
04:32PM	04:51PM	05:01PM	05:06PM	05:15PM	05:28PM	05:40PM	05:50PM	05:59PM	06:10PM	06;22PM	06:36PM
05:02PM	05:21PM	05:31PM	05:36PM	05:45PM	05:58PM	06:10PM	06:20PM	06:29PM	06:40PM	06:52PM	07:06PM
05:32PM	05:51PM	06:01PM	06:06PM	06:15PM	06:28PM	06:40PM	06:50PM	06:59PM	07:10PM	07:19PM	07:29PM


06:02PM	06;21PM	06:31PM	06:36PM	06:45PM	06:58PM	07:10PM	07:17PM	07:23PM	07:32PM	07:41PM	07:51PM
06:33PM	06:52PM	07:02PM	07:06PM	07:13PM	07:22PM	07:33PM	07:40PM	07:46PM	07:55PM	08:04PM	08:14PM
07:04PM	07:18PM	07:27PM	07:31PM	07:38PM	07:47PM	07:58PM	08:05PM	08:11PM	08:20PM	08:29PM	08:39PM
07:34PM	07:48PM	07:57PM	08:01PM	08:08PM	08:17PM	08:28PM	08:35PM	08:41PM	08:50PM	08:59PM	09:09PM
08:04PM	08:18PM	08:27PM	08:31PM	08:38PM	08:47PM	08:58PM	09:05PM	09:10PM	09:17PM	09:24PM	09:33PM
08:35PM	08:49PM	08:58PM	09:02PM	09:08PM	09:14PM	09:23PM	09:29PM	09:34PM	09:41PM	09:48PM	09:57PM
09:28PM	09:39PM	09;46PM	09:49PM	09:55PM	10:01PM	10:10PM	10:16PM	10:21PM	10:28PM	10:35PM	10:44PM
10:28PM	10:39PM	10:46PM	10:49PM	10:55PM	11:01PM	11:10PM	11:16PM	11:21PM	11:28PM	11:35PM	11:44PM

Back to previous page (javascript; history.go(-1))

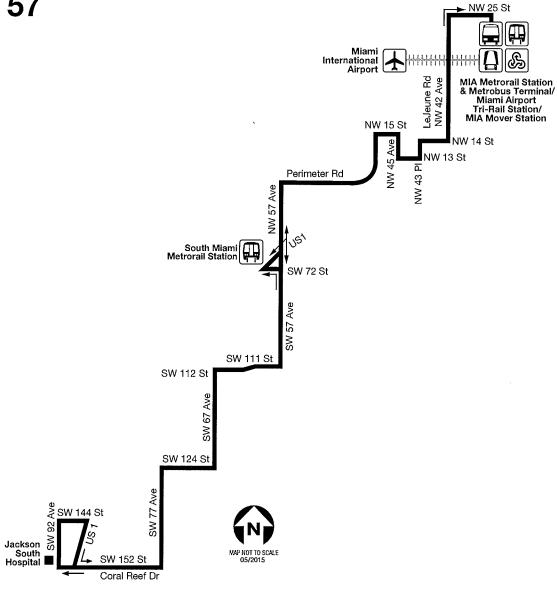
Page Last Edited: Mon Dec 21, 2015 11:21:25 PM

Route 37

Miami-Dade County Transportation and Public Works

Routes Schedule

57 (Northbound) WEEKDAY


SW 152 ST BUSWAY STATION	SW 92 AVE & 152 ST	SW 77 AVE & 124 ST	SW 111 ST & 57 AVE	SOUTH MIAMI METRORAIL STATION	SW 57 AVE & 24 ST	SW 57 AVE & W FLAGLER ST	Airport Station
06:31AM	06:32AM	06:46AM	06:55AM	07:10AM	07:27AM	07:36AM	07:52AM
07:31AM	07:32AM	07:46AM	07:55AM	08:10AM	08:27AM	08:36AM	08:52AM
08:31AM	08:32AM	08:46AM	08:55AM	09:10AM	09:24AM	09:31AM	09:47AM
09:34AM	09:35AM	09:49AM	09:57AM	10:10AM	10:24AM	10:31AM	10:47AM
10:34AM	10:35AM	10:49AM	10:57AM	11:10AM	11:24AM	11:31AM	11:47AM
11:34AM	11:35AM	11:49AM	11:57AM	12:10PM	12:24PM	12:31PM	12:47PM
12:34PM	12:35PM	12:49PM	12:57PM	01:10PM	01:24PM	01:31PM	01:47PM
01:34PM	01:35PM	01:49PM	01:57PM	02:10PM	02:24PM	02:31PM	02:47PM
02:34PM	02:35PM	02:49PM	02:57PM	03:10PM	03:24PM	03;31PM	03:47PM
03:29PM	03:30PM	03:44PM	03:52PM	04;10PM	04:28PM	04:35PM	04:52PM
04:29PM	04:30PM	04:47PM	04:57PM	05:15PM	05:33PM	05:40PM	05:57PM
05:39PM	05:40PM	05:57PM	06:07PM	06:25PM	06:43PM	06:50PM	07:07PM

Back to previous page ([avascript: history.go(-1)]

Page Last Edited: Mon Dec 21, 2015 11:21:25 PM

Route 57

Contact Information

Applicant and Property Owner

Riviera Plaza Holdings LP 848 Brickell Avenue, PH1 Miami, FL 33131 786-220-0460 akarsenti@13fi.com

Agent and Attorney

Mario Garcia-Serra Gunster Brickell World Plaza 600 Brickell Avenue Suite 3500 Miami, FL 33131 305-376-6061 mgarcia-serra@gunster.com

Architect:

Behar Font Partners, P.A. 4533 Ponce de Leon Boulevard Coral Gables, FL 33146 305-740-5442 javier@beharfont.com

Project Traffic Consultant

David Plummer & Associates 1750 Ponce de Leon Boulevard Coral Gables, Florida 33134 305-447-0900 tim.plummer@dplummer.com

MIA_ACTIVE 4598618.1

Historical Resources & Cultural Arts

.. Riv

2327 SALZEDO STREET CORAL GABLES FLORIDA 33134

- ® 305.460.5093
- (E) hist@coralgables.com

February 22, 2017

Riviera Plaza Holdings LP c/o Wexford Capital LP 848 Brickell Avenue, PH1 Miami, FL 33131

Re: 1542 South Dixie Highway, legally described as Tracts "A" and "B" of the replat of a portion of Block 199 of Coral Gables Riviera Section Part 14 according to the plat thereof as recorded in Plat Book 53 Page 97 in the public records of Miami-Dade County, Florida

Dear Property Owners:

Section 3-1107(g) of the Coral Gables Zoning Code states that "All demolition permits for non-designated buildings and/or structures must be approved by the Historic Preservation Officer or designee. The approval is valid for eighteen (18) months from issuance and shall thereafter expire and the approval is deemed void unless the demolition permit has been issued by the Development Services Department. The Historic Preservation Officer may require review by the Historic Preservation Board if the building and/or structure to be demolished is eligible for designation as a local historic landmark or as a contributing building, structure or property within an existing local historic landmark district. This determination of eligibility is preliminary in nature and the final public hearing before the Historic Preservation Board on Local Historic Designation shall be within sixty (60) days from the Historic Preservation Officer determination of "eligibility." Consideration by the Board may be deferred by mutual agreement by the property owner and the Historic Preservation Officer. The Historic Preservation Officer may require the filing of a written application on the forms prepared by the Department and may request additional background information to assist the Board in its consideration of eligibility. Independent analysis by a consultant selected by the City may be required to assist in the review of the application. All fees associated with the analysis shall be the responsibility of the applicant. The types of reviews that could be conducted may include but are not limited to the following: property appraisals; archeological assessments; and historic assessments."

Therefore, please be advised that after careful research and study of our records and the information you presented the following information has been determined:

1542 South Dixie Highway, legally described as Tracts "A" and "B" of the replat of a portion of Block 199 of Coral Gables Riviera Section Part 14 according to the plat thereof as recorded in Plat Book 53 Page 97 in the public records of Miami-Dade County, Florida, does not meet the minimum eligibility criteria for

designation as a local historic landmark. Therefore, the Historical Resources staff will not require review by the Historic Preservation Board if an application is made for a demolition permit.

This letter is a reissue of the previous letter dated May 27, 2016. Please note that, pursuant to Section 2-705(b)(15) of the Coral Gables Zoning Code, this determination does not constitute a development order and is valid for a period of eighteen (18) months. In the case where the Historic Preservation Officer or designee determines that the property does not meet the minimum eligibility criteria for designation, a permit for the demolition of the property must be issued within the eighteen-month period.

Upon expiration of the eighteen-month period, you will be required to file a new application. Any change from the foregoing may be made upon a demonstration of a change in the material facts upon which this determination was made.

If you have any further questions concerning this matter, please do not hesitate to contact this office.

Sincerely,

Dona M. Spain

Historic Preservation Officer

cc: Mario Garcia-Serra, 600 Brickell Avenue, Suite 3500, Miami, FL 33131

Craig Leen, City Attorney

Miriam S. Ramos, Deputy City Attorney

Charles Wu, Interim Development Services Director

Ramon Trias, Planning & Zoning Director

William Miner, Building Director

Virginia Goizueta, Plans Processor Lead

Historical Significance Request Property File

CFN: 20150240192 BOOK 29578 PAGE 168 DATE:04/15/2015 08:53:28 AM DEED DOC 99,000.00 SURTAX 74,250.00 HARVEY RUVIN, CLERK OF COURT, MIA-DADE CTY

This instrument prepared by:

Marc J. Sternbaum, Esq. Rennert Vogel Mandler & Rodriguez, P.A. 100 SE 2nd Street, Suite 2900 Miami. Florida 33131

After recording return to:

Monica Cunill-Falls, Esq. Avila Rodriguez Hernandez Mena & Ferri LLP 2525 Ponce de Leon Blvd., Suite 1225 Coral Gables, Florida 33134

Tax folio nos.: 03-4130-010-0010 and 03-4130-010-0011

SPECIAL WARRANTY DEED

THIS INDENTURE, made this State day of April, 2015, between RIVIERA PLAZA, LLC. a Florida limited liability company, having an address of 1550 S. Dixie Highway, Suite 210, Coral Gables, Florida 33146 (hereinafter called "Grantor"), and RIVIERA PLAZA HOLDINGS LP, a Delaware limited partnership, having an address of c/o Wexford Capital LP, 411 West Putnam Avenue, Greenwich, CT 06830 (hereinafter called "Grantee") (the words "Grantor" and "Grantee" to include their respective successors and assigns where the context requires or permits).

WITNESSETH:

THAT GRANTOR, for and in consideration of the sum of TEN AND 00/100 DOLLARS (\$10.00), and other valuable considerations, receipt whereof is hereby acknowledged, by these presents does grant, bargain, sell, alien, remise, release, convey and confirm unto Grantee, all of Grantor's right, title and interest in that certain parcel of land situated in Miami-Dade County, Florida, as more particularly described on **Exhibit "A"** attached hereto and incorporated herein by this reference (the "**Property**");

TOGETHER with all the tenements, hereditaments and appurtenances thereto belonging or in anywise appertaining.

This conveyance is expressly made subject only to those matters set forth on **Exhibit "B"** (the "*Permitted Exceptions*") attached hereto and incorporated herein by this reference, provided that this reference shall not be deemed to reimpose the Permitted Exceptions.

TO HAVE AND TO HOLD the same in fee simple forever.

AND GRANTOR HEREBY COVENANTS with said Grantee that the Grantor is lawfully seized of said land in fee simple; that the Grantor has good right and lawful authority to sell and convey said land; that the Grantor hereby fully warrants the title to said land and will defend the same against the lawful claims of all persons claiming by, through or under the said Grantor, but not otherwise.

IN WITNESS WHEREOF, the Grantor has executed the within instrument as of the date first set forth above.

Signed in the presence of:

GRANTOR:

RIVIERA PLAZA, LLC, a Florida limited liability company

By: Celiance Seff, Manager
Adrienne Leff, Manager

By:

Phil Schneiderman, Manager

As to Adrienne Leff:

rint Name:

As to Phil Schneiderman:

Print Name:

rint Name: < e ci

ecice MARY HOVE LAN

STATE OF FLORIDA)	
) ss: COUNTY OF MIAMI-DADE)	
The foregoing instrument was acknowledged before me this ** day of	y company.
Notary Public My commission expires:	inel
[NOTARY SEAL]	
EXPIRES: June 28, 20 Bonded That Budget Notary Su	?1 996 D18
STATE OF FLORIDA)	
) ss: COUNTY OF MIAMI-DADE)	
The foregoing instrument was acknowledged before me this 848 day of 64 day of 65 by Phil Schneiderman, as Manager of RIVIERA PLAZA, LLC, a Florida limit company, on behalf of the company. He is personally known to me or as identification.	ted liability
Notary Public My commission expires:	<i>e</i>
[NOTARY SEAL]	

EXHIBIT "A"

LEGAL DESCRIPTION

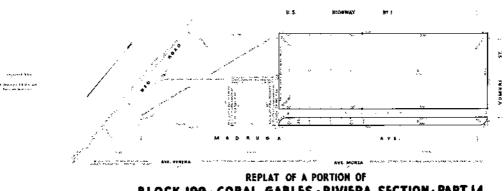

Tracts "A" and "B", of the REPLAT OF A PORTION OF BLOCK 199 OF CORAL GABLES RIVIERA SECTION PART 14, according to the Plat thereof, as recorded in Plat Book 53, at page 97, of the Public Records of Miami-Dade County, Florida.

EXHIBIT "B"

Permitted Exceptions

- 1. Real estate taxes and assessments for 2015 and subsequent years, which are not yet due and payable.
- 2. Zoning and building ordinances.
- 3. Rights of tenants in possession as tenants only, under unrecorded leases, with no rights of first refusal or options to purchase all or any part of the Property.
- 4. Matters shown on the plat of Replat of a Portion of Block 199 of Coral Gables Riviera Section Part 14, as recorded in Plat Book 53, at Page 97.
- 5. Declaration of Restrictive Covenant, recorded April 19, 1991, in Official Records Book 14990, at Page 2460.
- 6. Easement granted to Florida Power and Light Company, recorded April 24, 2001, in Official Records Book 19621, at Page 1689.
- 7. Easement granted to Florida Power and Light Company, recorded December 5, 2001, in Official Records Book 20056, at Page 3694.

BLOCK 199 · CORAL GABLES · RIVIERA SECTION · PART 14

BEING A REPLAT OF A PORTION OF BLOCK 199 OF THE SECOND REVISED PLAT OF CORAL GASSIS - RIVISBA SECTION -PART 14 - P.B.28 - P.32 19180 IN SECTION 20-54-41 CORAL GASSIS - PADE COUNTY FLORIDA

MANAGE TO CONTRACTOR OF THE STATE OF THE

The second of the best of great into the confidence of the second in the second of the

SUMMER OF THE SECOND SE

The Scholars Therefore Proceeding the Control of th

CAME IN LOCAL CONTROL OF SECURITY CONTROL OF S

Committee training the control of the committee training of the commit

Control to the Control of March 1982 of the Control of the Control

Section 2016 Process Con-

ONDINUNCE NO. 628

AN ORDINANCE VACATING AND DISCUTINATING THAT CERTAIN 20 FOOT ALLEY RURSHING SOUTH-WESTERLY AND NORTHEASTERLY IN BLOCK 199, RIVIERA SECTICI PART 14, FROM RED ROAD TO THE MORHEASTERLY BOUNDARY LINE OF LOT 3 IN SAID BLICK EXTRADED, ACCORDING TO PLAT THERROF FILED IN THE FLERIC RECORDS OF DALES COUNTY, FLORIDA, TO FERMIT CONSTRUCTION OF A BUILDING OVER SAID ALLEY WHICH WOULD BE INVOSTBLE WITHOUT SUCH VACATION AND DISCONTINUANCE.

WHEREAS, Harley M Vanderboegh and wife are the owners of Lots 1 to 4, both inclusive and Lots 40 to 44, both inclusive of Block 199 of 2nd Revised Plat of Coral Gables, Riviera Section, Part 14, according to a map or plat thereof, recorded in Plat Book 28 at Page 32 of the Public Records of Dade County, Plorida; and

WHIRRAS, the said Harley W. Vanderboegh has requested the City of Coral Gables to vacate the alley as shown on said plat, commencing at Red Road, and lying between Lots 1, 2 and 3 and Lots $\mu\mu$, 43 and 42 and the scuthwesterly 25 feet of Lot 41; and

WHEREAS) the said Harley ft. Vanderboegh has represented to the city that he has the written consents of the other property owners in said block to the vacation of said alley and has deeded to the city, for alley purposes, the northeasterly 25 feet of Lot 41 of said Block 199 of 2nd Revised Plat of Coral Gables Riviera Section, Part L4, according to the plat thereof recorded in Plat Book 28 at page 32, Dade County, Florida, records;

NOT, THEREFORE, BE IT CREATINED BY THE COLDUISSION OF THE CITY OF CORAL GARLES, FLORIDA:

SECTION 1. That the 20 feet allow numing northeasterly and nouthwesterly in Block 199, Riviera Section, Part 14, from Red Read to the northeasterly boundary line of lot 3 in said block, extended, according to the plat thereof recorded in the Rublic Records of Dade County, Florida, in Plat Book 28, at page 32, (being that portion of the alley in said block lying between lots 1, 2 and 3 and Lots 44, 43, 42 and the nouthwesterly 25 feet of Lot 41 thereof) be, and the same hereby is vacated.

PASSED AND ADDITED THIS 18th DAY OF OCTOBER A. D. 1949.

APPROVED:

MAYOR
W. Kolth Phillips

ATTEST:

E. B. Poc

٦

HER REPORTED THE REPORT OF

Abess stated that the matter had been discussed with the Architects Board (which took no action because the work was prohibited by city ordinance) and the Zoning Board, On motion of Commissioner Neher, seconded by Commissioner Rogers and unanimously adopted, the amended sign ordinance, passed on first reading at the regular meeting December 1, 1953, was amended to permit the painting of decorative motifs upon awnings, above the valances, provided that a permit was secured therefor from the Building Department, and provided further that in each such instance the decoration motif to appear upon the awning was to be approved by the City Commission.

Mr. Morris Kellman appeared before the Commission to request permission to hang a sign "Kells Apartments" from a bracket on his building at 214 Avenue Antiquera. It was pointed out to Mr. Kellman that this violated the sign ordinance and would not be permitted. He was advised to apply to the Building Department for the installation of a sign complying with the sign ordinance of the city.

The City Manager was directed to take **prosecutive** action against any similar signs that may violate the **ordinance**, alleged by Mr. Kellman to be in existence.

The following resolution was presented and read:

- RESOLUTION NO. 5303

A RESOLUTION AUTHORIZING AN EXCEPTION TO ORDINANCE NO. 271, KNOWN AS THE "ZONING ORDINANCE".

BE IT RESOLVED BY THE COMMISSION OF THE CITY OF CORAL GABLES, FIORIDA:

That the following exception to the provisions of Ordinance No. 271, having been recommended by the Zoning Board of Appeals at its regular meeting of December 14, 1953, be and the same hereby is granted:

Permit construction of a **residence** exceeding the maximum floor coverage by 4.48 percent upon Lot 3> Block 151, Country Club Section **Part** 6.

Motion for its adoption was made by Commissioner Rogers, seconded by Commissioner Phillips. Resolution was adopted by the following roll call:

"Yeas" - Commissioners Hartnett, Phillips and Rogers; Mayor tiendrick. "Nays".

- Commissioner Neher.

Mr. W. J. McLeod and Mr. Leslie Coombes appeared before the Commission requesting approval of a replat of a portion of Block 199; Riviera Section, and requesting that the paving of the new alley and parking spaces on such replat be not required of the owers at this time.

co

I

ORDINANCE NO. 809

AN ORDINANCE APPROVING A PLAT ENTITLED "REPLAT OF A PORTION OF BLOCK 199, CORAL GABLES RIVIERA SECTION PART 14, BEING A REPLAT OF A PORTION OF BLOCK 199 OF THE SECOND REVISED PLAT OF CORAL GABLES RIVIERA SECTION PART 14, P.B. 28 P. 32 LYING IN SECTION 30-54-41, CORAL GABLES, DADE COUNTY, FLORIDA"; AND ACCEPTING DEDICATION OF . ALLEY AS SHOWN THEREON.

which was read and adopted on first reading December 1, 1953, was read again in full. Motion for its adoption was made by Commissioner Neher, seconded by Commissioner Phillips and the ordinance was adopted by the following roll call: Commissioners Hartnett, Neher, Phillips and Rogers; Mayor Hendrick, "Nays" - None.

Thereupon Mayor Hendrick declared the ordinance passed and adopted and ordered its publication as Ordinance No. 809.

Commissioner Hartnett was excused from the meeting at this **point.**The following resolution was presented and read:

RESOLUTION NO. 5304

A RESOLUTION DIRECTING THE MAYOR AND CITY CLERK NOT TO SIGN AND DELIVER THE PLAT APPROVED BY ORDINANCE NO. 809 UNTIL THE OCCURRENCE OF CERTAIN EVENTS LISTED HEREIN.

BE IT RESOLVED BY THE COMMISSION OF THE CITY OF CORAL GABLES, FLORIDA: $. \label{eq:coral_condition}$

That the Mayor and City Clerk are hereby directed not to sign and execute the **replat** of Block 199, Coral Gables Riviera Section, and not to deliver said signed plat to the owners thereof unless and until the following events and actions take **place:**

- by all owners of the land within such plat and delivered to the city, such covenant to be in form and content as approved by the City Attorney, providing that a five-foot masonry wall eight inches thick be constructed along the southwesterly line of such replat and along the street line of Avenue Madruga.
- 2. That 1953 city taxes be paid upon all property lying within the **replat.**
- 3. That opinions of title to the property within the plat, satisfactory to the City Attorney, be delivered to the City Attorney,
- 4. That the northeasterly twenty-five feet of Lot 39 in said Block 199 be deeded to the city for use as an alley and that satisfactory arrangements be made with the grantor that the grantor will pave such property as an alley at his expense, or that he deposit an a dequate sum with the city to insure such paving in an amount to be approved by the City Manager.
- ${\bf 5}_{ullet}$ That said replat be ${\bf signed}$ by all owners, ${\bf mortgagees}$ and lessees of ${\bf record.}$

Motion for its adoption was made by Commissioner Neher, seconded by Commissioner Phillips. Resolution was adopted by the following roll call:

GHL

12-15-53

"Yeas" - Commissioners Neher, Phillips and Rogers; Mayor Hendrick. "Nays" None.

The following ordinance was presented and read:

ORDINANCE NO. 810

AN ORDINANCE AMENDING SECTION 15 OF ORDINANCE NO. 271, KNOWN AS THE "ZONING ORDINANCE"; ESTABLISHING. A FRONT SETBACK FOR ALL PROPERTY IN BLOCK 199, RIVIERA SECTION; REPEALING ALL ORDINANCES OR PARTS OF ORDINANCES IN CONFLICT HEREWITH; AND DECLARING THIS TO BE AN FMERGENCY ORDINANCE.

Motion was made by Commissioner Phillips, seconded by Commissioner Rogers, that the requirement of reading on two separate days be dispensed with and the ordinance be placed on second reading at once. Motion was adopted by the following roll call: "Yeas" - Commissioners Neher, Phillips and Rogers; Mayor Hendrick. "Nays" - None.

- Thereupon the ordinance was read again in full. Motion for its adoption was made by Commissioner Phillips, seconded by Commissioner Rogers, and the ordinance was adopted by the following roll rail* "Yeas" - Commissioners Neher, Phillips and Rogers; Mayor Hendrick. "Nays" - None.

Thereupon Mayor Hendrick declared the ordinance passed and adopted and ordered its publication as Ordinance No. 810,

The City Clerk presented to the Commission a plat of land entitled "Grand Avenue Park, a Subdivision in the NWL of the SEL of Section 20-54-41", said land being owned by the City of Miami and said plat being presented by the Department of Engineering, City of Miami. The land covered in said plat is at the southwest corner of Grand Avenue and Jefferson Street, and extends into Coral Gables a distance of 3.25 feet on Grand Avenue and a distance of 1.23 feet at the south end of such tract. The City Clerk advised that inasmuch as only a few feet of land within the City of Coral Gables was involved the plat had not been presented to the Zoning or Planning Boards for approval.

The following ordinance was presented and read:

ORDINANCE

AN ORDINANCE APPROVING A PLAT ENTITLED "GRAND AVENUE PARK, A SUBDIVISION IN THE NWT OF THE SET OF SECTION 20, TWP. 54 S., RGE. 41 E, MIAMI, DADE COUNTY, FLORIDA".

upon **first** reading. Motion for its adoption "on first reading was made by **Commissioner** Rogers, seconded by Commissioner Phillips. Ordinance was adopted on first reading by the following roll call: "Yeas" - Commissioners Neher., Phillips. 12-15-53

33

T

1.3

8

0

call, diffile.

In this is that the certain plan could be plant of pertins of Back 19, that the count count of a pertins of Back 19, that the other count certain be due to the count certain be of the certain certain beautiful plant at the pertain charges and allow be trained by the certain beautiful plant at the pertain certain beautiful plant at the certain beautiful plant at the pertain certain beautiful plant at the certain beautiful plant of the certain certain beautiful plant of the certain certain beautiful plant at the certain beautiful plant of the certain beautiful certain certai

Figure and another than left that of exchange, a. 0. Thus,

ORDIDIANCE HO. 810

AH CEDINANCE AMENDING SECTION 15 OF CEDINANCE

10. 271, KNOWN AS THE "SONING CHUTMANCE"; ESTABLISHING 4 FRONT SETHACK FOR ALL PROPERTY IN BLOCK

199, RIVIERA SECTION; REPEALING ALL CHOIMNECES OR
PARTS OF ORDINANCES IN CONFLICT HERBITH; AND
DECLARING THIS TO BE AN EMERGENCY CROIMANCE.

BIS IT ORDATNED BY THE CONDISSION OF THE CITY OF CORAL GABLES, FLORIDA:

and adopted February 16, 1937, and known as the "Zoning Ordinance" as amended, be and the same is hereby amended by the addition therete of the following paragraphs

The front setback from South Dixie Highway (also known as U. S, Highway Ro. 1 and Hiami-Homestead Highway) for all lete and parcels of land in Block 199, Riviera Section Part 14, Flat Book 28, page 32, or as shown upon any replat of all or part of such block, shall be 56 feet.

SECTION 2m That all ordinances or parts of ordinances inconsistent or in conflict herewith are hereby repealed insofar as there is conflict.

an energency measure upon the grounds of urgent public meet for the preservation of peace, health, safety and property of the people of Coral Gables.

PASSED AND ADOPTED THIS 15TH DAI OF DECEMBER, A. D. 1953.

APPROVED:

ATTESTS

T: 305-255-8451 www.att.com

Mr. Ashley Ziel 13th Floor Investments 848 Brickell Ave PH1 Miami, FL 33131

Re: Alley Vacation – Riviera Plaza

1550 S Dixie Hwy, Coral Gables, FL

Mr. Ziel,

On behalf of Bellsouth Telecommunications, LLC d/b/a AT&T Florida, this letter shall serve as notice of "non-objection" to the vacation/abandonment of that portion of the referenced public right of way (Alley) as depicted on the attached Sketch and Legal description prepared by Continental Land Surveyors, Inc. dated March 6, 2015.

No existing AT&T Florida facilities of record currently occupy the subject "Alley".

Sincerely,

Steve Low, Mgr OSP Planning & Engineering

Steve Zow

SE Network Operations Const/Eng – SFL District

Engineering – Design Department 2601 SW 145th Ave Miramar, FI 33027

Thursday, June 09, 2016

Ashley Zeil **13th Floor Investments** 848 Brickell Ave PH1 Miami, FL 33131

RE: Mark-Up Request / Easement vacation @ Riviera Plaza 1542 – 1566 South Dixie Hwy Miami, FL Comcast ID # - CWSI-M16-4217

Dear Ziel:

Please be advised ...in reference to the above mention project...

Comcast has existing aerial and subgrade facilities within the limits of this project.

Comcast is clear and has *no objections* to vacate the existing easement based on the survey dated 03/06/15. Should it become necessary, Comcast will coordinate with the developer for a separate easement if needed. All existing Comcast facilities indicated on the plans for the above-reference project are "To Remain".

Should you have any further questions, please feel free to call me.

Cordially,

Chris Taylor

South Florida Utility Coordinator Authorized Contractor for Comcast 954-239-8386 (Office)

www.Cable-Wiring.com

cc: Leonard Maxwell Newbold

cc: Ric Davidson cc: Jose Martinez

September 15, 2016

Mr. Ramon Trias
Director of Planning and Zoning
455 Biltmore Way
Coral Gables, FL 33134

Reference:

Tentative Plat at 1542-1566 South Dixie Highway, Coral Gables, Florida 33146

Name:

Coral Gables Riviera Section

Location: Tracts A and B replat of a Portion of Block 199 Coral Gables Riviera Section Part 14 according to the Plat Thereof as Recorded in Plat Book 53 Page 97 Public records of Miami-Dade County, FL.

To Whom It May Concern:

Please consider this letter as your notification that satisfactory arrangements for installations of underground electric service have been made in accordance with Ordinance 68-69.

As per our agreement with you, we would appreciate your making these satisfactory arrangements contingent on easement requirements as follows:

- () Easements necessary for electrical facilities are marked on the attached copy of the subject tentative.
- (X) No additional easements are required at this time for electrical facilities.
- () Easements have been assured verbally by the owner/developer and will be granted prior to . completion of the building construction.

An easement by separate instrument will be granted by the customer for the future facilities, and therefore FPL has no objection to this Plat.

If there are any questions or you need any further information please call Seth Stegelmann at (305) 377-6147 for further assistance.

Sincerely,

Seth Stegelmann Associate Engineer CC: Ashley Ziel Project Manager 13th Floor Investments 848 Brickell Avenue PH1 Miami, FL 33131 Main 786-220-0460

4045 NW 97th Ave. Doral, FL 33178

305 838 3600 phone www. floridacitygas.com

November 8, 2016

Attn: Ashley Ziel

Project Manager

13th Floor Investments Direct 786-581-2523 Mobile 305-336-5227

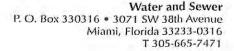
RE: Riviera Plaza - 1542-1566 South Dixie Highway – Waiver of Objection Request

Dear Ms. Ziel:

Florida City Gas (FCG) has received your waiver of objection request to vacate the easement (alley) located in the aforementioned address. Based on a review of available records and/or field verification of existing FCG facilities, the following has been determined for the subject request:

FCG does not have existing facilities within the identified limits of the aforementioned defined area. Therefore, FCG has no objections to the proposed vacation of the said easement.

If you need additional information or should any questions, comments or concerns arise, Please do not hesitate to contact me.


Regards,

Oscar J. Rodriguez, MEM-EIT

Engineer, Intermediate

Engineering Design – FCG

305-835-3650

miamidade.gov

November 23, 2016

Mr. Ashley Ziel, Project Manager

13th Floor Investments

848 Brickell Avenue, PH1

Miami, FL 33131

Re: Waiver of Objection / Alley Vacation / 1542 South Dixie Highway, Coral Gables, FL / Riviera Plaza

Dear Mr. Ziel:

On behalf of the Miami-Dade Water and Sewer Department ("WASD") this letter shall serve as notice of "non-objection" to the vacation/abandonment of that portion of the referenced public right of way (alley) as depicted on the Sketch and Legal Description provided. WASD records indicate an existing water main across the alley. In connection with this existing water mail, the owner of the subject property has agreed to grant alternative easements in order to maintain uninterrupted services to the new building Accordingly, WASD has no objection to the proposed vacation.

Should you have any question regarding this matter, do not hesitate to contact me.

Very truly yours,

Guillermo Guerrero, PSM

Right of Way Unit

Miami Dade County Water and Sewer Department

2: 786-268-5268

www.miamidade.gov/water

Connect With Us on Twitter | Facebook

QUALITY. VALUE. ECONOMIC GROWTH.

WWW.MIAMIDADE.GOV/WATER

Ashley Ziel

Subject:

FW: Riviera Plaza - 1550 S. Dixie Hwy., Coral Gables, FL - No Objection

From: Leeger, Gegi [mailto:Gegi.Leeger@xo.com]

Sent: Monday, October 17, 2016 1:50 PM

To: Ashley Ziel

Subject: RE: Riviera Plaza - 1550 S. Dixie Hwy., Coral Gables, FL - No Objection

Mr. Ziel,

XO Communications continues not to have any facilities on this property.

Gegi Leeger

Director - Privacy and Regulatory Affairs

XO Communications

| 13865 Sunrise Valley Drive | Herndon, VA 20171 |

| P: 703.547.2109 | C: 202-345-2325 | gegi.leeger@xo.com | www.xo.com |

From: Ashley Ziel [mailto:aziel@13fi.com]
Sent: Monday, October 17, 2016 11:33 AM
To: Leeger, Gegi < Gegi.Leeger@xo.com>

Subject: Riviera Plaza - 1550 S. Dixie Hwy., Coral Gables, FL - No Objection

RE: PETITION FOR VACATION OF ALLEY RIVIERA PLAZA PROPERTY AT 1550 SOUTH DIXIE HIGHWAY, CORAL GABLES, FL

Hello Ms. Leeger,

My name is Ashley Ziel and I am a Development Manager with 13th Floor Investments in Miami, FL. I am contacting you today because our firm would like an updated no-objection letter (or confirming email) from XO on the subject property. I am attaching the previous email from you stating that XO has no affected facilities as reference. The Identifying information is as follows:

"THAT PORTION OF A 20 FOOT ALLEY LYING BETWEEN TRACT A AND B REPLAT OF A PORTION OF BLOCK 199 CORAL GABLES RIVIERA SECTION PART 4 ACCORDING TO THE PLAT THEREOF AS RECORDED IN PLAT BOOK 53 PAGE 97 OF THE PUBLIC RECORDS OF MIAMI-DADE COUNTY, FLORIDA ... "

Please do not hesitate to contact me at the numbers below should you need additional information. Thank you for your time and consideration in this matter.

Regards,

Mr. Ashley Q. Ziel Project Manager

848 Brickell Avenue PH1 Miami, FL 33131 Main <u>786-220-0460</u>

Direct 786-581-2523 Mobile 305-336-5227 Email: aziel@13fi.com

Website: www.13fi.com

The City of Coral Gables

Public Works Department 2800 SW 72 Avenue Miami, FL 33155

December 1, 2016

Jennifer E. Fine Brickell World Plaza, 600 Brickell Avenue, Suite 3500 Miami, FL 33131 JFine@gunster.com

Electronic Correspondence

RE: Proposed Alley Vacation at 1542 – 1566 S. Dixie Hwy. (Riviera Plaza)

Dear Mrs. Fine:

The City of Coral Gables owns and maintains a gravity sewer line within the referenced alley. We consent to vacate the alley if a relocation and/or easement is provided to maintain our utilities.

If you have any question, please do not hesitate to contact me.

Sincerely,

Jorge E. Acevedo P.E., LEED Green Associate

Utilities Director

Jacevedo2@coralgables.com

cc. Ed Santamaria, <u>esantamaria@coralgables.com</u>
Lina Hickman, Ihickman@coralgables.com

CITYOFCORAL GABLES

-MEMORANDUM-

TO: CHARLES WU

INTERIM DEVELOPMENT SERVICES DIRECTOR

DATE: JUNE 28, 2017

RAMON TRIAS

PLANNING AND ZONING DIRECTOR

FROM: EDUARDO SANTAMARIA, P.E.

PUBLIC WORKS DIRECTOR

SUBJECT: PLANING & ZONING BOARD COMMENTS_ ALLEY VACATION AND DEDICATION OF PERPETUAL SUBSTITUTE EASEMENT 1542 SOUTH DIXIE HIGHWAY

At the January 27, 2017, Development Review Committee (DRC) meeting City staff reviewed the application by Riviera Plaza Holdings LP, to vacate a portion of an existing paved alley and dedication of a substitute perpetual easement, located in Block 199, Coral Gables Riviera Section 14 (Plat Book 28- Page 22), Coral Gables, Florida.

In accordance with Section 62-262 of the City Code, property owners within 1,000 feet of the proposed alley to be vacated were notified by letter on June15, 2017 of the Planning and Zoning public hearing where the Riviera Plaza Holdings LP's application would be reviewed. Utility companies and government agencies that may be affected by this action were also notified.

Public Works recommends approval of the Riviera Plaza Holdings LP application to vacate a portion of an existing paved alley and dedication of a substitute perpetual easement, located in Block 199 subject to the following conditions and provisions, as brought forward at the DRC meeting:

- 1. The applicant grants to the City by Deed of Dedication absolute rights of public ingress and egress and of all utilities whatever interests they need.
- 2. That all vehicle turning radius be adequate for all vehicles that would normally or occasionally use the alley.
- 3. That a vertical clearance of sixteen feet (16') minimum extending the full length and width of the easement should be provided.
- 4. Applicant is responsible for the relocation of the existing utilities in the proposed alley to be vacated in accordance to the requirements of the affected utility companies including City's gravity sanitary sewer line..

- 5. Applicant must seek Commission approval and provide fully executed hold harmless agreement or restrictive covenant for all proposed encroachments into, onto, under and over the City's right-of-ways.
- 6. Applicant must seek Florida Department of Transportation approval for proposed improvements on or affecting South Dixie Highway.

Attachments

- 1. Meetings Notification Letters
- 2. Riviera Plaza Holdings LP Submittal
- 3. Utility Companies Waiver of Objections
- 4. City Departments Memo
- 5. DRC Meeting minutes
- 6. Residents Mail-out
- 7. Utility Companies Mail-out
- c: Catherine Swanson- Rivenbark, City Manager
 Peter Iglesias, Assistant City Manager
 Marcos de la Rosa, Fire Chief
 Jessica Keller, Assistant Public Works Director
 John Osgood, Public Works Assistant Director
 Yamilet Senespleda PE, City Engineer
 Jorge Acevedo, Utility Director
 Juan Martinez, Professional Land Surveyor

Public Hearing Courtesy Notification

City of Coral Gables Public Works Department 2800 SW 72 Avenue Miami, Florida 33155

Email: pwdepartment@coralgables.com

Telephone: (305) 460-5000

Fax: (305) 460-5080

June 15th, 2017

Subject: Courtesy Public Hearing Notice - Application No. PW-17-01-0190

Dear Property Owner:

Application No. PW-17-01-0190, 1542 S. Dixie Highway – Proposed alley vacation and dedication of substitute easement. (Application submitted by Riviera Plaza Holdings, LP.

In accordance with Section 62-263 of the Coral Gables City Code, Local Planning Agency (LPA)/ Planning and Zoning Board (PZB) will conduct a Public Hearing to consider an ordinance to vacate a portion of an existing paved alley and dedication of a substitute easement, located in Block 199, Coral Gables Riviera Section Part 14 (Plat Book 53 at Page 97), Coral Gables, Florida.

The Public Hearing will be conducted on Wednesday July 12, 2017 at 6:00 p.m. to consider the above subject matter in the Commission Chambers, 2nd Floor, City Hall, 405 Biltmore Way, Coral Gables, Florida. The proposed alley vacation and substitute public access easement is as shown on the attached sketch.

All interested parties are invited to attend and participate. Upon recommendation by the Board, the application will be scheduled for City Commission consideration. Notice of the upcoming City Commission <u>public hearing</u> will be sent to you in the near future.

If you have questions related to this issue please contact Public Works Department, City of Coral Gables, at 305-460-5000 or pwdepartment@coralgables.com.

Sincerely,

Eduardo Santamaria, P.E., CGC, LEED AP Public Works Director Public Works Department City of Coral Gables

(Mail Date: June 16, 2017)

Public Meeting Courtesy Notification

City of Coral Gables Public Works Department 2800 SW 72 Avenue Miami, Florida 33155

Email: pwdepartment@coralgables.com

Telephone: (305) 460-5000

Fax: (305) 460-5080

January 9, 2017

Subject: Courtesy Notice of Public Meeting - Application No. PW- 17-01-0190

Dear Property Owner:

The City of Coral Gables Development Review Committee will be considering at a public meeting the following:

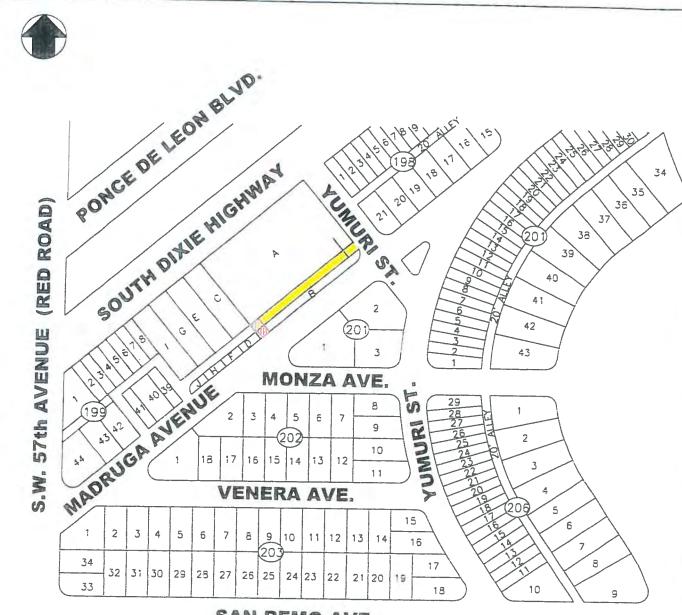
Application No. PW-17-01-0190, 1542 S. Dixie Highway – Proposed alley vacation and dedication of substitute easement.

In accordance with Section 62-263 of the Coral Gables City Code, the City's Development Review Committee shall consider an application by Riviera Plaza Holdings, LP, to vacate a portion of an existing paved alley and dedication of a substitute easement, located in Block 199, Coral Gables Riviera Section Part 14 (PB 53 PG 97), Coral Gables, Florida.

The Development Review Committee will hold a <u>public meeting</u> to consider the above subject matter in the Planning Department, 2nd Floor, 427 Biltmore Way, Coral Gables, Florida, on Friday January 27, 2017 at 9:30 a.m. The public is invited to attend, but no testimony will be taken at the meeting of the Development Review Committee. The Committee's technical and professional comments shall be forwarded to the Planning and Zoning Board and shall become part of the record.

The purpose of the Development Review Committee meeting is to provide information related to the proposed alley vacation and substitute easement. You will be provided the opportunity to comment on this proposed alley vacation and substitute easement at a future Planning and Zoning Board <u>public hearing</u>. Notice of the upcoming Planning and Zoning Board <u>public hearing</u> will be sent to you in the near future.

If you have questions related to this issue please contact Lina Hickman, Public Works Department, City of Coral Gables, at 305-460-5000 or pwdepartment@coralgables.com.


Singerely,

Eduardo Santamaria, P.E.

Public Works Director

Public Works Department

City of Coral Gables

SAN REMO AVE.

PROPOSED ACCESS EASEMENT
PROPOSED ALLEY TO BE VACATED

	A 1				
PRUPUSED	ALLEY	VACATION	AND	FASEMENIT	DEDICATION
			11110		
SCALE NITS					0 2010/11/01

DEPARTMENT OF PUBLIC WORKS

ENGINEERING DIVISION

CITY OF CORAL GABLES, FLORIDA

DATE: 01/06/2017

FB:

FILE NO:

Our File Number: 39535.00001 Writer's Direct Dial Number: (305) 376-6061 Writer's E-Mail Address: mgarcia-serra@gunster.com

October 19, 2016

VIA HAND DELIVERY

Mr. Eduardo Santamaria Public Works Director City of Coral Gables 2800 SW 72nd Avenue Coral Gables, FL 33155

Re: New Publix Super Market / 1542 South Dixie Highway / Request to Vacate Alley / Public Works Application / Letter of Intent

Dear Mr. Santamaria,

On behalf of Riviera Plaza Holdings LP, (the "Applicant"), we respectfully submit this Public Works application for vacation of an alley in connection with the proposed construction of a new Publix Super Market (the "Project") to be located at 1542 South Dixie Highway (the "Property"). The Property is approximately 64,000 square feet in size and is bisected by an alley at the rear of the Property. The Property lies south of South Dixie Highway with Yumuri Street to the northeast and Madruga Avenue to the southeast. The Applicant proposes to demolish the existing two-story structure and to construct a new Publix Super Market on the approximately 1.5 acre site.

Pursuant to Section 62-257 et seq. of the Coral Gables Code of Ordinances, we respectfully request that the City vacate, abandon, and close a portion of the alley that presently runs through the Property, from Yumuri Street on the east to the boundary line of Tracts A and B approximately 300 feet to the west (the "Alley"). The Alley, which is further described in the enclosed materials, is approximately 20 feet in width and 300 feet in length. The Applicant intends to provide an alternative access easement that will connect to what will remain of the Alley on the property to the west to Madruga Avenue. The vacation of this portion of the Alley is necessary to consolidate the building site.

The Alley has little benefit to the public as it does not connect two thoroughfares; instead it dead ends up against another commercial development on its west side, which is the result of an ordinance previously adopted by the City Commission vacating the west 20 feet of the alley from Red Road to the boundary line of lot 3. A copy of that previously adopted Ordinance, Ordinance No. 628, is attached to this letter. Historically, the alley that bisects and has been utilized as a driveway for the existing surface parking lot to its North and South and is indistinguishable from that parking lot. The Project will offset any potential impacts which may be caused by the requested vacation by internalizing all service and loading functions within the

proposed new building, providing structured parking, and a more pedestrian-friendly and aesthetically pleasing design that more accurately reflects modern design and planning standards.

Vacating a portion of this underutilized Alley is consistent with the City's Comprehensive Plan, as it permits consolidation of the Property making way for the Project which furthers various goals, policies and objectives of the City's Comprehensive Plan as further explained in the attached **Exhibit A**. The Applicant will bear all costs associated with the relocation of utilities, pavements, sidewalks, curbing and removal of same. If you have any questions regarding this matter, please contact me at 305-376-6061 or <u>mgarciaserra@gunster.com</u>. Thank you for your attention to this matter.

Mouro Houra Seven

Mario Garcia-Serra

MIA_ACTIVE 4528978.2

EXHIBITA"

Comprehensive Plan Analysis

We respectfully submit that the proposed alley vacation complies with the applicable criteria as set forth in Section 3-1203 of the Zoning Code as follows:

- A. The non-fee property interest sought to be abandoned:
 - 1. Does not provide a benefit to the public health, safety, welfare, or convenience, in that:
 - a. It is not being used by the City for any of its intended purposes.

The alley has never served its intended purpose, as it has only ever been used as a driveway for the parking area of the retail shopping center.

b. The Comprehensive Plan, special purpose plan, or capital improvement program does not anticipate its use; or

The text of the Comprehensive Plan does not contemplate use of the subject alley.

- 2. Provides some benefit to the public health, safety, welfare, or convenience, but the overall benefit anticipated to result from the abandonment outweighs the specific benefit derived from the non-fee property interest, in that:
 - a. The vacation or abandonment will not frustrate any comprehensive plan, special purpose plan, or capital improvement program of the City;

The vacation of the alley will not frustrate any comprehensive plan, special purpose plan, or capital improvement program of the City.

b. The vacation or abandonment will not interfere with any planning effort of the City that is underway at the time of the application but is not yet completed; and

The vacation of the alley will not interfere with any planning effort of the City.

B. The vacation or abandonment will provide a material public benefit in terms of promoting the desired development and improves the City's long-term fiscal condition and the applicant provides beneficial mitigation in the form of a proffered mitigation plan which mitigates the loss of real property, the increase in the intensity of use and/or impacts on the public health, safety and welfare including increased parking and traffic.

The vacation will provide a material public benefit by bringing a long-awaited modern supermarket to this area of the City. Furthermore, the Applicant will mitigate the impacts of the alley vacation by internalizing the traditional functions of an alley, including service and loading functions, as well as by providing structured parking.

The proposed alley vacation also complies with the applicable criteria as set forth in

Section 62-264 of the City's Code of Ordinances as follows:

(1) Whether the public benefits from the use of the subject right-of-way as part of the city street system;

The public does not currently benefit from the use of the alley as it only functions as a parking area driveway for customers of the retail shopping center.

(2) Whether the proposed action is consistent with the city's comprehensive plan;

Vacating the alley is consistent with the City's Comprehensive Plan because it promotes desired development in an area in which such development is much needed in accordance with the following goals, objectives and policies:

Goal FLU-1. Protect, strengthen, and enhance the City of Coral Gables as a vibrant community ensuring that its neighborhoods, business opportunities, shopping, employment centers, cultural activities, historic value, desirable housing, open spaces, and natural resources make the City a very desirable place to work, live, and play.

Objective FLU-1.8. Continue to ensure land and resources are made available which are suitable for utility facilities and other infrastructure required to support proposed development.

Goal DES-1. Maintain the City as a livable city, attractive in its setting and dynamic in its urban character.

Objective DES-1.1. Preserve and promote high quality, creative design and site planning that is compatible with the City's architectural heritage, surrounding development, public spaces and open spaces.

Policy DES-1.1.1. Promote and support George Merrick's vision consistent with the established historic and cultural fabric of the City.

(3) The availability of alternative action to alleviate the identified problems;

Vacating the alley is necessary to consolidate the Property and permit the Project.

(4) The effect of the proposed action upon traffic circulation;

The proposed action will not have any effect on traffic circulation.

(5) The effect of the proposed action upon the safety of pedestrians and vehicular traffic;

The proposed action will create a more pedestrian-friendly design, which will ensure the safety of pedestrians and vehicular traffic.

(6) The effect of the proposed action upon the provision of municipal services, including, but not limited to, emergency services and waste removal; and

The proposed action will have no effect on the provision of municipal services.

(7) The mitigation plan proposed by the applicant to offset any potential impacts.

The Project will offset any potential impacts by internalizing all service and loading functions within the new building and by providing structured parking.

MIA_ACTIVE 4537033.1

THE CITY OF CORAL GABLES

CORAL GABLES, FLORIDA

STREET AND ALLEY VACATION GUIDELINES

CHECK LIST

APPLICANT(S) MUST RETURN THE FOLLOWING:

x	1.	Application		
<u>x</u>	2.	Certified Survey		
<u>x</u>	3.	Letter of Intent		
<u>x</u>	4.	Waiver of Objections		
<u>x</u>	5.	Filing Fee \$6,000.00 (Ordinance No. 0-2015-17)		
<u>x</u>	6.	List and Mailing Labels of Property Owners within a minimum	1000' ra	dius,

^{*}Applicant: All property owners abutting the proposed right of way to be vacated

THE CITY OF CORAL GABLES CORAL GABLES, FLORIDA

STREET AND ALLEY VACATION

			DATE:	10/14/20	16
APPLICATION FOR VACATION OF A	A STREI	ET OR ALLEY, (PLEA	SE CHECK	IF APPLIC	ABLE
Vacation of Street					
x Vacation of Alley					
PLEASE PRINT OR TYPE:					
Riviera Plaza Holdings LP Name of Applicant(s)			-		
1542 South Dixie Highway Street Address		al Gables, FL 33146 , State, Zip	786-220-0 Telephone		
CHECK APPROPRIATE BOX		Rent <u>x</u> Own			
848 Brickell Avenue, PH1		mi, FL 33131	786-220-0	460	
Mailing Address	City,	State, Zip	Telephone	Number	
2. A. General description of r.o.	w. to be	vacated (survey with le	egal description	on to be atta	ched)
Alley that runs between Tracts "A	" and "E	B" of Block 199 of Cor	al Gables Riv	viera Section	<u>14</u>
	=				
					
B. Dimension of proposed vac	cation:	Length in feet:	300		
		Width in feet:	_20		

Rev. 5/3/94 Rev. 12/11/97 Rev. 1/26/99 Rev. 6/22/05

If a	pplicant(s) is going to dedicate property for a Substitute Street or Alley, describe the perty to be dedicated for such substitution.
Apr	plicant will provide an alternative access easement which will connect to the remaining
port	tion of the alley on the property to the west of the subject property. Please see enclosed
sket	tch and legal description of proposed alternative access easement.
App	son for the requested abandonment, vacation and closure. Plicant is requesting vacation of the alley to consolidate the building site. The alley has er served its intended purpose.
	Applicant(s) Signature

Rev. 5/3/94 Rev. 12/11/97 Rev. 1/26/99

Rev. 6/22/05

APPLICANT(S) (continued)

Name (Print)	Signature	Mailing Address
OWNER OF:		
Lot(s)	Block	Section
Name (Print)	Signature	Mailing Address
OWNER OF:		
Lot(s)	Block	Section
Name (Print)	Signature	Mailing Address
OWNER OF:		
Lot(s)	Block	Section
Name (Print)	Signature	Mailing Address
OWNER OF:		
Lot(s)	Block	Section
Name (Print)	Signature	Mailing Address
OWNER OF:		
Lot(s)	Block	Section
Name (Print)	Signature	Mailing Address
Action by: Development & Review Co	ommittee	
		Date
		Date
		Date
City Commission:		
Planning Department		
Memoranda:		

Rev. 5/3/94 Rev. 12/11/97 Rev. 1/26/99 Rev. 6/22/05

APPLICANT(S) (continued)

Name (Print)	Signature	Mailing Address
OWNER OF:	-	
Lot(s)	Block	Section
Name (Print)	Signature	Mailing Address
OWNER OF:		
Lot(s)	Block	Section
Name (Print)	Signature	Mailing Address
OWNER OF:		
Lot(s)	Block	Section
Name (Print)	Signature	Mailing Address
OWNER OF:		
Lot(s)	Block	Section
Name (Print)	Signature	Mailing Address
Action by: Development Review Commit	too	
bevelopment review commit	ilee	Date
		Date
		Date

Rev. 5/3/94 Rev. 12/11/97 Rev. 1/26/99 Rev. 6/22/05

THE CITY OF CORAL GABLES CORAL GABLES, FLORIDA STREET AND ALLEY VACATION GUIDELINES

Please read carefully and comply with all instructions which apply to your request in order to avoid an incomplete application and resultant delay.

LIMITATION AUTHORITY

The Development Review Committee is charged with the responsibility of making an investigation, holding hearings, and submitting recommendation to the City Manager on requests for street and alley vacations. The hearing determination of vacating a street and alley is vested with the City Commission.

PRELIMINARY REVIEW

It is advisable to discuss the application with the staff of the Engineering Division in order to avoid filing is completely future or incomplete application.

INCOMPLETE APPLICATION

All required exhibits and supplementary data must be submitted at the same time as the application is filed, or the application will be determined to be incomplete. Incomplete applications will not be accepted and will be returned to the applicant.

FILING AND HEARING FEES

At the time of filing the application, the applicant shall pay a filing fee of \$1,500 (Ordinance 0-2004-34, Section 5) to pay the cost of processing the application.

EXHIBITS AND DATA

- A. GENERAL: All exhibits and data submitted in connection with the application becomes a part of the public records of the City of Coral Gables.
- B. LETTER OF INTENT: All applicants must be accompanied by a letter of intent. Please describe in detail in the letter of intent the proposed use of the vacated property, also explain to what extent the request would serve the public benefit which would warrant the granting of the request. The letter of intent shall also contain a statement that all costs relative to the relocation of any and all utilities, pavements, sidewalks, curbing and removal of same where discontinued shall be borne by the applicant.
- C. CERTIFIED SURVEY: All applications must be accompanied by a certified survey prepared by a registered land surveyor showing the dimensions of any locations of the street and alley to be vacated. The survey shall also show the following, located within the proposed vacation:

- 1. Location of power poles.
- 2. Location of telephone poles.
- Location of underground telephone, power lines. 3.
- 4. Location and size of water lines.
- 5. Location and size of gas lines.
- 6. Location of sanitary sewer lines.
- 7. Location and size of stormwater lines.
- 8. Location and size of soakage pits.
- 9. Location of all manholes.
- WAIVER OF OBJECTION: Attach letter from the following utility companies stating whether or not they have objections to the vacation of the street and/or alley.
- 1. Miami-Dade Water & Sewer Department (Ms. Odalys C. Bello, 786-268-5268)
- Florida Power & Light Company (Mr. Victor Muñiz 305-552-4056) 2.
- 3. AT&T (Mr. Steve Massie 305-222-8745)
- City Gas Company of Florida (Mr. Dexter Pinkney 305-835-3632) 4.
- 5. Comcast (Mr. Leonard Maxwell 954-447-8405)
- XO Communication and all other Telecommunication Companies. 7.
- City of Coral Gables Utilities Div. (Mr. Jorge Acevedo (305-460-5005) 8.

Contact 305-460-5026 for contact persons and mailing addresses.

PLEASE NOTE:

- 1. No hearing will be scheduled or heard on an incomplete or inaccurate application.
- 2. Application forms are available at the City of Coral Gables, Engineering Division, 2800 S.W 72 Avenue, Miami, Florida (Telephone # 305-460-5026).
- 3. Checks for application fee shall be payable to the CITY OF CORAL GABLES.
- 4. It is advisable to discuss your application with the staff of the Engineering Division in order to avoid a completely futile or incomplete application.

THIS APPLICATION, WTIH ALL REQUIRED SUPPLEMLENTAL DATA AND INFORMATION, MUST BE COMPLETED IN CONFORMITY WITH THE ATTACHED INSTRUCTIONS AND THEN RETURNED OT THE SECRETARY OF THE STREET AND ACLEY VACATION COMMITTEE WITH THE APPROPRIATE APPLICATION FEE.

I HAVE READ AND UNDERSTAND THE FOREGOING INSTRUCTIONS.

ctober 18,2016

Arnaud Karsenti

APPLICANT(S) (PRINT OR TYPE) APPLICANT(S) SIGNATURE

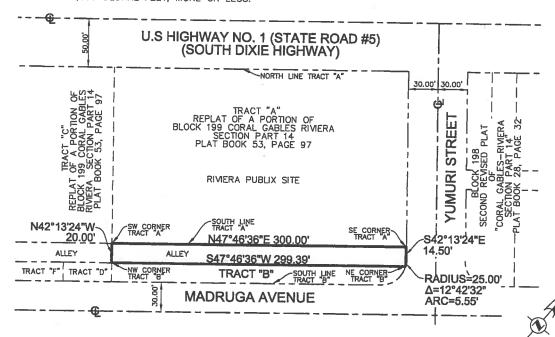
Rev. 5/3/94 Rev. 12/11/97 Rev. 1/26/99

Rev. 6/17/05 Rev. 8/5/10

SKETCH AND LEGAL DESCRIPTION

BY PULICE LAND SURVEYORS, INC.

5381 NOB HILL ROAD SUNRISE, FLORIDA 33351


TELEPHONE: (954) 572-1777 FAX: (954) 572-1778 E-MAIL: surveys@pulicelandsurveyors.com CERTIFICATE OF AUTHORIZATION LB#3870

LEGAL DESCRIPTION:

THE 20.00 FOOT WIDE ALLEY BETWEEN TRACTS "A" AND "B" OF "REPLAT OF A PORTION OF BLOCK 199 OF CORAL GABLES RIVERIA SECTION PART 14", ACCORDING TO THE PLAT THEREOF, AS RECORDED IN PLAT BOOK 53, PAGE 97, OF THE PUBLIC RECORDS OF MIAMI-DADE COUNTY, FLORIDA.

SAID LANDS SITUATE, LYING AND BEING IN THE CITY OF CORAL GABLES, MIAMI-DADE COUNTY, FLORIDA AND CONTAINING 5,999 SQUARE FEET, MORE OR LESS.

NOTES:

- 1) BEARINGS ARE BASED ON THE SOUTH LINE OF TRACT "A" BEING N47*46'36"E.
- 2) THIS IS NOT A SKETCH OF SURVEY AND DOES NOT REPRESENT A FIELD SURVEY.
- 3) THIS SKETCH IS NOT VALID WITHOUT THE SIGNATURE AND ORIGINAL RAISED SEAL OF A FLORIDA LICENSED

SURVEYOR AND MAPPER.

LEGEND:

Œ CENTERLINE CENTRAL ANGLE Δ

FILE: 13TH FLOOR INVESTMENTS

SCALE: 1"=80' DRAWN BY: B.E.

ORDER NO.: 62044

DATE: 10/31/16

20' ALLEY VACATION

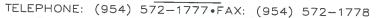
CORAL GABLES, FLORIDA

FOR: RIVIERIA PUBLIX

JOHN F. PULCE, PROFESSIONAL SURVEYOR AND MAPPER LS2691

BETH BURNS, PROFESSIONAL SURVEYOR AND MAPPER LS6136

VICTOR R. GILBERT, PROFESSIONAL SURVEYOR AND MAPPER LS6274


STATE OF FLORIDA

SKETCH AND LEGAL DESCRIPTION

BY PULICE LAND SURVEYORS, INC.

5381 NOB HILL ROAD SUNRISE, FLORIDA 33351

E-MAIL: surveys@pulicelandsurveyors.com CERTIFICATE OF AUTHORIZATION LB#3870

LEGAL DESCRIPTION: ACCESS EASEMENT

THE SOUTHWESTERLY 24.10 FEET OF TRACT "B", "REPLAT OF A PORTION OF BLOCK 199 OF CORAL GABLES RIVERIA SECTION PART 14", ACCORDING TO THE PLAT THEREOF, AS RECORDED IN PLAT BOOK 53, PAGE 97, OF THE PUBLIC RECORDS OF MIAMI-DADE COUNTY, FLORIDA; LESS THE SOUTHWESTERLY 4.10 FEET THEREOF; TOGETHER WITH THE SOUTHWESTERLY 24.10 FEET OF THAT PORTION OF THE 20.00 FOOT WIDE ALLEY BETWEEN TRACTS "A" AND "B" OF

SAID LANDS SITUATE, LYING AND BEING IN THE CITY OF CORAL GABLES, MIAMI-DADE COUNTY, FLORIDA AND CONTAINING 872 SQUARE FEET, MORE OR LESS.

NOTES:

3) THIS SKETCH IS NOT VALID WITHOUT THE SIGNATURE AND ORIGINAL RAISED SEAL OF A FLORIDA LICENSED SURVEYOR AND MAPPER.

LEGEND: CENTERLINE

FILE: RIVIERA PLAZA HOLDINGS LP

SCALE: 1"=80"

DRAWN BY: B.E.

ORDER NO.: 62126

DATE: 11/09/16

ACCESS EASEMENT

CORAL GABLES, FLORIDA

FOR: RIVIERIA PUBLIX

LI JOHN F. PULICE, PROFESSIONAL SURVEYOR AND MAPPER LS2691

☐ BETH BURNS, PROFESSIONAL SURVEYOR AND MAPPER LS6136

VICTOR R. GILBERT, PROFESSIONAL SURVEYOR AND MAPPER LS6274 STATE OF FLORIDA

The City of Coral Gables

Public Works Department 2800 SW 72 Avenue Miami, FL 33155

December 1, 2016

Jennifer E. Fine
Brickell World Plaza, 600 Brickell Avenue, Suite 3500
Miami, FL 33131
JFine@gunster.com

Electronic Correspondence

RE: Proposed Alley Vacation at 1542 – 1566 S. Dixie Hwy. (Riviera Plaza)

Dear Mrs. Fine:

The City of Coral Gables owns and maintains a gravity sewer line within the referenced alley. We consent to vacate the alley if a relocation and/or easement is provided to maintain our utilities.

If you have any question, please do not hesitate to contact me.

Sincerely,

Jorge E. Acevedo P.E., LEED Green Associate

Utilities Director

Jacevedo2@coralgables.com

cc. Ed Santamaria, <u>esantamaria@coralgables.com</u> Lina Hickman, <u>lhickman@coralgables.com</u>

T: 305-255-8451 www.att.com

Mr. Ashley Ziel 13th Floor Investments 848 Brickell Ave PH1 Miami, FL 33131

Re:

Alley Vacation - Riviera Plaza

1550 S Dixie Hwy, Coral Gables, FL

Mr. Ziel,

On behalf of Bellsouth Telecommunications, LLC d/b/a AT&T Florida, this letter shall serve as notice of "non-objection" to the vacation/abandonment of that portion of the referenced public right of way (Alley) as depicted on the attached Sketch and Legal description prepared by Continental Land Surveyors, Inc. dated March 6, 2015.

No existing AT&T Florida facilities of record currently occupy the subject "Alley".

Sincerely,

Steve Low, Mgr OSP Planning & Engineering SE Network Operations Const/Eng – SFL District

Steve Zow

Mr. Ashley Ziel 13th Floor Investments 848 Brickell Ave PH1 Miami, FL 33131

Re:

Alley Vacation – Riviera Plaza

1550 S Dixie Hwy, Coral Gables, FL

Mr. Ziel,

On behalf of Bellsouth Telecommunications, LLC d/b/a AT&T Florida, this letter shall serve as notice of "non-objection" to the vacation/abandonment of that portion of the referenced public right of way (Alley) as depicted on the attached Sketch and Legal description prepared by Continental Land Surveyors, Inc. dated March 6, 2015.

No existing AT&T Florida facilities of record currently occupy the subject "Alley".

Sincerely,

Steve Low, Mgr OSP Planning & Engineering SE Network Operations Const/Eng – SFL District

Steve Zow

Ashley Ziel

Subject:

FW: Riviera Plaza - 1550 S. Dixie Hwy., Coral Gables, FL - No Objection

From: Leeger, Gegi [mailto:Gegi.Leeger@xo.com]

Sent: Monday, October 17, 2016 1:50 PM

To: Ashley Ziel

Subject: RE: Riviera Plaza - 1550 S. Dixie Hwy., Coral Gables, FL - No Objection

Mr. Ziel,

XO Communications continues not to have any facilities on this property.

Gegi Leeger

Director – Privacy and Regulatory Affairs

XO Communications

13865 Sunrise Valley Drive | Herndon, VA 20171 |

|P: 703.547.2109 |C: 202-345-2325 |gegi.leeger@xo.com | www.xo.com |

From: Ashley Ziel [mailto:aziel@13fi.com]
Sent: Monday, October 17, 2016 11:33 AM
To: Leeger, Gegi < Gegi.Leeger@xo.com >

Subject: Riviera Plaza - 1550 S. Dixie Hwy., Coral Gables, FL - No Objection

RE: PETITION FOR VACATION OF ALLEY

RIVIERA PLAZA

PROPERTY AT 1550 SOUTH DIXIE HIGHWAY, CORAL GABLES, FL

Hello Ms. Leeger,

My name is Ashley Ziel and I am a Development Manager with 13th Floor Investments in Miami, FL. I am contacting you today because our firm would like an updated no-objection letter (or confirming email) from XO on the subject property. I am attaching the previous email from you stating that XO has no affected facilities as reference. The Identifying information is as follows:

"THAT PORTION OF A 20 FOOT ALLEY LYING BETWEEN TRACT A AND B REPLAT OF A PORTION OF BLOCK 199 CORAL GABLES RIVIERA SECTION PART 4 ACCORDING TO THE PLAT THEREOF AS RECORDED IN PLAT BOOK 53 PAGE 97 OF THE PUBLIC RECORDS OF MIAMI-DADE COUNTY, FLORIDA ... "

Please do not hesitate to contact me at the numbers below should you need additional information. Thank you for your time and consideration in this matter.

Regards,

Mr. Ashley Q. Ziel Project Manager

848 Brickell Avenue PH1 Miami, FL 33131

Main <u>786-220-0460</u> Direct <u>786-581-2523</u>

Mobile 305-336-5227
Email: aziel@13fi.com
Website: www.13fi.com

Water and Sewer P. O. Box 330316 • 3071 SW 38th Avenue Miami, Florida 33233-0316 T 305-665-7471

miamidade.gov

November 23, 2016

Mr. Ashley Ziel, Project Manager

13th Floor Investments

848 Brickell Avenue, PH1

Miami, FL 33131

Re: Waiver of Objection / Alley Vacation / 1542 South Dixie Highway, Coral Gables, FL / Riviera Plaza

Dear Mr. Ziel:

On behalf of the Miami-Dade Water and Sewer Department ("WASD") this letter shall serve as notice of "non-objection" to the vacation/abandonment of that portion of the referenced public right of way (alley) as depicted on the Sketch and Legal Description provided. WASD records indicate an existing water main across the alley. In connection with this existing water mail, the owner of the subject property has agreed to grant alternative easements in order to maintain uninterrupted services to the new building Accordingly, WASD has no objection to the proposed vacation.

Should you have any question regarding this matter, do not hesitate to contact me.

Very truly yours,

Guillermo-Guerrero, PSM

Right of Way Unit

Miami Dade County Water and Sewer Department

2: 786-268-5268

www.miamidade.gov/water

Connect With Us on Twitter | Facebook

QUALITY. VALUE. ECONOMIC GROWTH.

WWW.MIAMIDADE.GOV/WATER

September 15, 2016

Mr. Ramon Trias
Director of Planning and Zoning
455 Biltmore Way
Coral Gables, FL 33134

Reference:

Tentative Plat at 1542-1566 South Dixie Highway, Coral Gables, Florida 33146

Name:

Coral Gables Riviera Section

Location: Tracts A and B replat of a Portion of Block 199 Coral Gables Riviera Section Part 14 according to the Plat Thereof as Recorded in Plat Book 53 Page 97 Public records of Miami-Dade County, FL.

To Whom It May Concern:

Please consider this letter as your notification that satisfactory arrangements for installations of underground electric service have been made in accordance with Ordinance 68-69.

As per our agreement with you, we would appreciate your making these satisfactory arrangements contingent on easement requirements as follows:

- () Easements necessary for electrical facilities are marked on the attached copy of the subject tentative.
- (X) No additional easements are required at this time for electrical facilities.
- () Easements have been assured verbally by the owner/developer and will be granted prior to . completion of the building construction.

An easement by separate instrument will be granted by the customer for the future facilities, and therefore FPL has no objection to this Plat.

If there are any questions or you need any further information please call Seth Stegelmann at (305) 377-6147 for further assistance.

Sincerely,

Seth Stegelmann Associate Engineer CC: Ashley Ziel Project Manager 13th Floor Investments 848 Brickell Avenue PH1 Miami, FL 33131 Main 786-220-0460

Engineering – Design Department 2601 SW 145th Ave Miramar, FI 33027

Thursday, June 09, 2016

Ashley Zeil 13th Floor Investments 848 Brickell Ave PH1 Miami, FL 33131

RE: Mark-Up Request / Easement vacation

@ Riviera Plaza 1542 – 1566 South Dixie Hwy
Miami, FL
Comcast ID # - CWSI-M16-4217

Dear Ziel:

Please be advised ...in reference to the above mention project...

Comcast has existing aerial and subgrade facilities within the limits of this project.

Comcast is clear and has *no objections* to vacate the existing easement based on the survey dated 03/06/15. Should it become necessary, Comcast will coordinate with the developer for a separate easement if needed. All existing Comcast facilities indicated on the plans for the above-reference project are "To Remain".

Should you have any further questions, please feel free to call me.

Cordially,

Chris Taylor

South Florida Utility Coordinator Authorized Contractor for Comcast 954-239-8386 (Office)

www.Cable_Wiring.com

cc: Leonard Maxwell Newbold

cc: Ric Davidson cc: Jose Martinez

4045 NW 97th Ave Doral, FL 33178

305 838 3600 phone www floridacitygas com

November 8, 2016

Attn: Ashley Ziel

Project Manager

13th Floor Investments Direct 786-581-2523 Mobile 305-336-5227

RE: Riviera Plaza - 1542-1566 South Dixie Highway - Waiver of Objection Request

Dear Ms. Ziel:

Florida City Gas (FCG) has received your waiver of objection request to vacate the easement (alley) located in the aforementioned address. Based on a review of available records and/or field verification of existing FCG facilities, the following has been determined for the subject request:

FCG does not have existing facilities within the identified limits of the aforementioned defined area. Therefore, FCG has no objections to the proposed vacation of the said easement.

If you need additional information or should any questions, comments or concerns arise, Please do not hesitate to contact me.

Regards,

Oscar J. Rodriguez, MEM-EIT

Engineer, Intermediate

Engineering Design - FCG

305-835-3650

DISPLAY THIS CARD ON FRONT OF JOB NO INSPECTION WILL BE MADE UNLESS PERMIT CARD IS DISPLAYED AND APPROVED PLANS ARE READILY AVAILABLE.

PERMIT ID: 225186 CUSTOMER #: 040015

CITY OF CORAL GABLES **PUBLIC WORKS DEPARTMENT**

PUBLIC WORKS PERMIT

2800 SW 72nd AVENUE MIAMI, FLORIDA 33155 (305) 460-5026 or 5025

Site Address:

1542 S DIXIE HWY

CORAL GABLES, FL 33146-3001

PERMIT NUMBER: PW-17-01-0190

PARCEL NUMBER: 03-4130-010-0010

Project Name: Legal Description:

30 54 41 CORAL GABLES RIVIERA SEC 14 REPLAT OF BLK 199 PB 53-97 TRACT A LOT SIZE 54160 SQ FT OR 29578-0168 0415 37

Applicant:

RIVIERA PLAZA HOLDINGS LP C/O

411 W PUTNAM AVE

GREENWICH, CT 06830

Owner:

RIVIERA PLAZA HOLDINGS LF 411 W PUTNAM AVE GREENWICH, CT 06830

Contractor:

Bus License: Expires:

State License:

Project Description:

APPLICATION FOR STREET AND ALLEY VACATION (DRC)

APPLICATION

1

This department must have: 24 hrs. notice for all inspections (305) 460-5026 or 5025 (fax) 460-5086

FAILURE TO OBTAIN ALL REQUIRED INSPECTIONS WILL RESULT IN AUTOMATIC REJECTION OF WORK

FEES

STREET AND ALLEY VACATION APPL

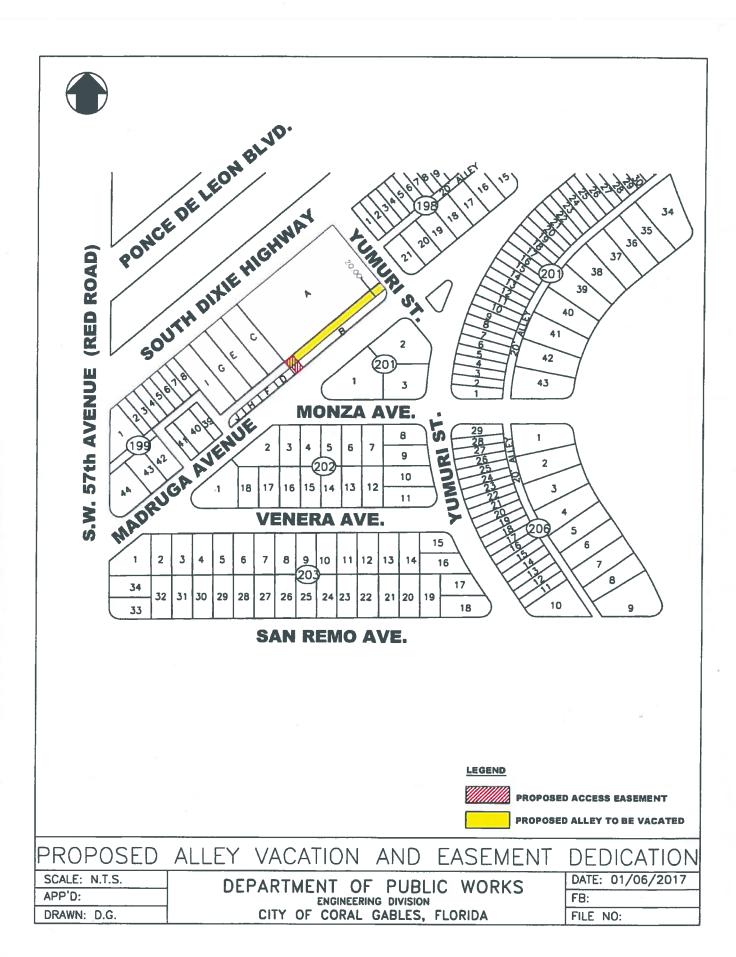
6,000.00

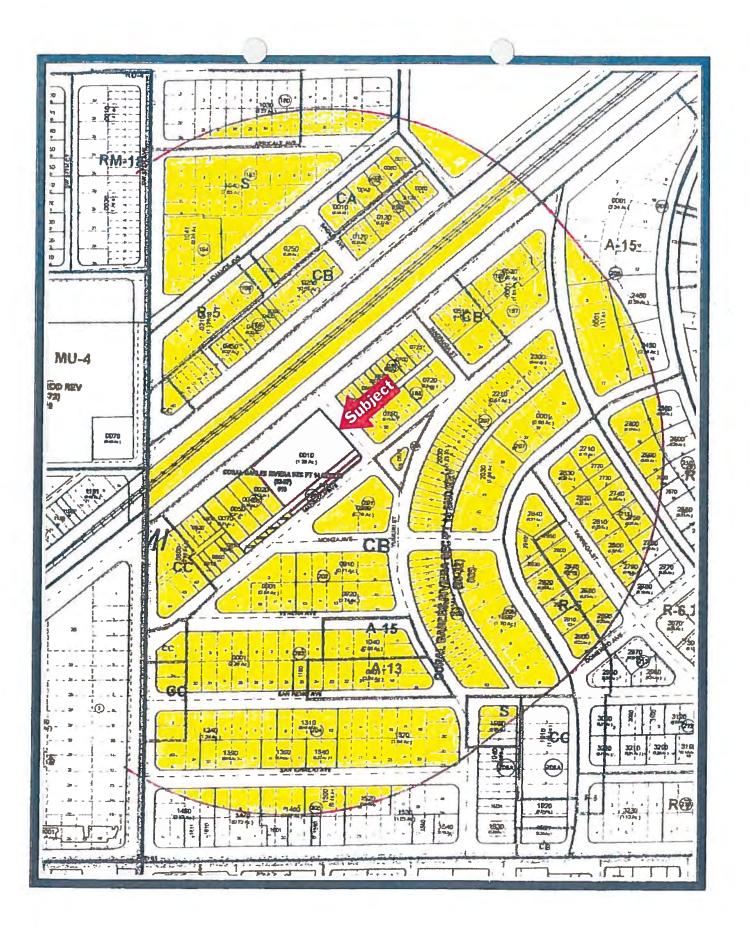
Issued Date:

01/06/2017

Expiration Date:

02/05/2017


CALL BEFORE YOU DIG FOR ALL UTILITY LOCATES SUNSHINE STATE ONE CALL 1-800-432-4770



TOTAL:

\$6,000.00

* REQUIREMENTS & CONDITIONS SHEETS ARE PART OF THIS PERMIT CALL THE AUTOMATED REQUEST SYSTEM TO SCHEDULE AN INSPECTION: 305-722-8700 SCHEDULE AN INSPECTION VIA THE WEB: WWW.CORALGABLES.COM

CITY OF CORAL GABLES

- MEMORANDUM -

TO: <u>CATHERINE SWANSON-RIVENBARK</u>

CITY MANAGER

RAMON TRIAS

PLANNING & ZONING DIRECTOR

ED HUDAK

POLICE CHIEF

MARCOS DE LA ROSA

FIRE CHIEF

BROOK DANNEMILLER

PUBLIC SERVICE DIRECTOR

JESSICA KELLER

ASSISTANT PUBLIC WOKS DIRECTOR

CHARLES WU

INTERIM DEVELOPMENT SERVICES DIRECTOR

JAVIER BETANCOURT

ECONOMIC SUSTAINABILITY DIRECTOR

KEVIN KINNEY

PARKING DIRECTOR

WALTER F. FOEMAN

CITY CLERK

CRAIG LEEN

CITY ATTORNEY

FROM:

EDUARDO SANTAMARI

PUBLIC WORKS DIRECTOR

SUBJECT: PROPOSED ALLEY VACATION AND DEDICATION OF SUBSTITUTE EASEMENT, 1542 S. DIXIE HWY

DATE: JANUARY 06, 2017

Attached please find an application for a proposed alley vacation and dedication of substitute easement for the proposed Publix Supermarket at 1542 S. Dixie Highway. The alley to be vacated is located between Tracks A and B, re-plat of portion of Block 199 of Coral Gables Riviera Section Part 14, Coral Gables.

In accordance with Ordinance No. 0-2004-34 and Chapter 62 of the City Code (attached) please review and provide your comments to the Public Works department by January 17, 2017.

This item, along with your comments, will be presented to the Development Review Committee scheduled for January 27, 2017.

C: John Osgood, Assistant Public Works Director Scott Bolyard, Planning Department Jorge Acevedo, Utilities Div. Supervisor Yamilet Senespleda, City Engineer Juan Martinez, Professional Land Surveyor Lina H. Hickman, Civil Engineer

Development Review Committee Members Sign-In

DRC Meeting January 27, 2017 9:30 a.m.

#	City Department/ Division	Member Name	Member in Attendance (Printed name)	Member in Attendance (Signature)	Member Telephone Number	Member Email Address
1	Building	William Miner	WAS m	WSASA	460-5240	wminer@ coralgables.com
2	Building	Manny Lopez			460-5242	mlopez@ coralgables.com
3	Fire	Chester Oms	0000	000	460-5074	coms@ coralgables.com
4	Parking	Kevin Kinney			460-5541	kkinney@ coralgables.com
5	Planning and Zoning	Carlos Mindreau	CARLOS MINDIREAU	Juli L.	476-7215 >	cmindreau@ coralgables.com
6	Planning and Zoning	Sebrina Brown	Sebrina Brown	Speny	460-5236	sbrown@ coralgables.com
7	Planning and Zoning	Ramon Trias	RAMON TRIA)	RITA	460-5211	rtrias@ coralgables.com
8	Police	Brian Lawrence	BRIAN	B. James	442-1600	blawrence@ coralgables.com
9	Hist. Res. & Cultural Arts	Dona Spain			460-5095	dspain@ coralgables.com
10	Public Service	Brook Dannemiller	Brock Danneniller	A.	460-5134	bdannemiller@ coralgables.com
11	Public Works	Lina Hickman	Lina H. Hickman	An Hitm	460-5048	lhickman@ coralgables.com
12	Public Works	Yamilet Senespleda			460-5034	ysenespleda@ coralgables.com
13	Planning and Zoning	Scot Bolyard	SCOT BOLYAMO	S= 725	460-5212	sbolyard@ coralgables.com
14	Hist. Res. & Cultural Arts	Catherine Cathers			460-5094	ccathers@ coralgables.com
15	Economic Development	Javier Betancourt			460-5310	jbetancourt@ coralgables.com

CITY OF CORAL GABLES

- MEMORANDUM -

TO: CHARLES WU

DEVELOPMENT SERVICES ACTING

DIRECTOR

DEVELOPMENT REVIEW COMMITTEE

(DRC) CHAIRMAN

FROM: CATHERINE CATHERS

ARTS & CULTURE SPECIALIST HISTORICAL RESOURCES AND CULTURAL ARTS DEPARTMENT DATE: JANUARY 27, 2017

SUBJECT: DEVELOPMENT REVIEW

COMMITTEE

ART IN PUBLIC PLACES REVIEW PUBLIX SUPERMARKET ALLEY ABANDONMENT & VACATION

1542 S DIXIE HWY. DR-17-01-0799

The Historical Resources and Cultural Arts Department / Art in Public Places program has reviewed the "Publix Supermarket Abandonment and Vacation" application package submitted for DRC Level 2 and has no comment related to Art in Public Places.

Development Review Committee

Public Wellie Sorvice/ Department / Division Landscape Services Project Name Publix		
Name (Print) Brook Dannemiller Project Address 1542 S. Dixie Hwy		
comments: 1. Please coordinate palm removals and mitigation with Landscape services.		

Januar 127/2017

Public Works Connexts Alley

- 9) The applicant shall grant the City by Deed of Dedication absolute rights of public ingress and egress and to all utilities whatever interests they need.
- 10) All vehicle turning radius be adequate for all vehicles that would normally or occasionally use the alley.
- 11) That a vertical clearance of sixteen feet (16') minimum extending the full length and width of the easement should be provided..
- Applicant is responsible for the relocation of the existing utilities in the proposed alley to be vacated in accordance to the requirements of the affected utility companies.
- 13) Applicant must seek approval and permit from Florida Department of Transportation for proposed improvements and impact on South Dixie Hwy..
- 14) Applicant must seek Commission approval and provide fully executed hold harmless agreement or restrictive covenant for any proposed encroachments into, onto, under and over the City's right-ofways.

CITY OF CORAL GABLES

- MEMORANDUM -

TO: Development Review Committee (DRC) DATE:

January 27, 2017

meeting minutes and record

FROM: Ramon Trias,

DRC Chairman

SUBJECT:

"Publix Supermarket Alley

Vacation" Development Services Department

Comments

The Development Services Department has reviewed the "Publix Supermarket" (1542 S. Dixie Hwy) application package submitted for DRC review. The applicant's request is for review of a proposed vacation of a public right-of-way. The Development Services Department has the following comments:

A. Planning and Zoning Division application comments and issues.

- 1. Vacation of a public right-of-way. Application requires Abandonment and Vacation review by the Planning and Zoning Board and approval by the City Commission. Include a Mitigation Plan and Streetscape Improvements Plan with future application submittals.
- 2. The proposed building will not require public hearing reviews and will be reviewed via the typical building permit process. However, the proposed building will be subject to green building requirements.
- 3. Green building requirements. Pursuant to Section 5-1302, the application is required to achieve no less than Leadership in Energy and Environmental Design (LEED) Silver certification, or Silver certification by the Florida Green Building Coalition (FGBC), or under another nationally recognized certification program approved by the City Manager or City Manager's designee.
- 4. Neighborhood Meeting. Zoning Code Section 3-302(D) states that all applications requiring a public hearing before the Planning and Zoning Board shall conduct a minimum of one (1) public information meeting, a minimum of fourteen (14) days in advance of the Planning and Zoning Board meeting.
- B. Building Director comments. Building Director comments are provided as Attachment A.
- C. Concurrency Administrator comments. Concurrency Administrator comments are provided as Attachment B.

Once the applicant has submitted a Planning Division Application that has been determined to be complete by Planning Staff, it will then be distributed to City Departments/Divisions for additional review and comments. The Planning and Zoning Division's comments will be provided in a detailed City Comment Letter with the comments provided by other City Departments. After all City comments have been addressed and the application submittal has been determined to be sufficient by Planning Staff, then the public hearing application can be scheduled for a Planning and Zoning Board meeting. Planning Staff is available to meet and assist with the submittal of the public hearing application and to answer any questions the applicant may have regarding the submittal requirements.

Development Services Department DRC Comments – "Publix Supermarket Alley Vacation" January 27, 2017 Page 2

Attachments:

- A. Building Director comments.
- B. Concurrency Administrator comments.

cc: (via email)

Charles Wu, Assistant Development Services Director
Dona Spain, Historical Resources and Cultural Arts Director
Jessica Keller, Assistant Public Works Director
Brook Dannemiller, Public Service Director
Kevin Kinney, Parking Director
Javier Betancourt, Economic Development Director
Brian Lawrence, Police Department
Chester Oms, Fire Department
Catherine Cathers, Arts & Culture Specialist
William Miner, Building Director
Manuel Lopez, Building Official
Carlos Mindreau, City Architect
Sebrina Brown, Concurrency Administrator
Scot Bolyard, Principal Planner
Elizabeth Gonzalez, Zoning Technician Lead

Attachment A

Building Division Comments Development Review Committee Meeting

Date: 1/27/2017

Agenda Item: Alley Vacation for New Publix Development

DR No: DR-17-01-0799

Project Address: 1542 South Dixie Hwy

Scope of Work: Abandonment/Vacation of Existing Alley

COMMENTS/QUESTIONS:

There are no Building issues in this application. Hence, Building Division has no comment or objection.

January 26, 2017

DRC CONCURRENCY REVIEW

DR #: 17-01-0799

PROJECT NAME: PUBLIX SUPERMARKET

JOB ADDRESS: 1542 S DIXIE HWY.

REVIEWER: <u>SEBRINA BROWN</u> PHONE#: (305) 460-5236

E-MAIL ADDRESS: sbrown@coralgables.com

COMMENTS:

• CONCURRENCY HAS NO COMMENTS AT THIS TIME.

Sebrina Brown

Concurrency Administrator
City Of Coral Gables
Development Services Department
Planning & Zoning Division
427 Biltmore Way, 2nd Floor
Coral Gables, FL 33134
PH: 305-460-5236
Sbrown@coralgables.com

Client Number: 39535.00001 Writer's Direct Dial: (305) 376-6028 Writer's Email Address: JFine@gunster.com

June 7, 2017

VIA HAND DELIVERY

Lina Hickman, Civil Engineer City of Coral Gables Department of Public Works 2800 SW 72nd Avenue Miami, FL 33155

Re: Mailing Labels / Riviera Plaza / 1542 South Dixie Highway

Dear Ms. Hickman:

In connection with our application for an alley vacation at the above referenced site, please find enclosed a copy of the letter certifying that the attached ownership list, map, and mailing labels are a complete and accurate representation of the real estate property and property owners within 1,000 feet radius of the boundaries of the subject site, as well as a copy of the ownership list and map and two (2) sets of mailing labels. If you have any questions, please contact me at 305-376-6028. Thank you for your attention to this matter.

Sincerely,

Jennifer E. Fine

Enclosures

MIA_ACTIVE 4618993.1

ALEX JIANZHONG CHEN YAN DU TOWER 3 FLAT UGC SSQ HKUST CLEAR WATER BAY HONG KONG CHINA LUIS E BURGOS VILLAMAR &W ROSA A SAN IGNACIO 1001 APT 8 QUITO ECUADOR TREVOR A HURWITZ &W DAWN HURWITZ 10720 HOLLYBANK DR RICHMOND BC V7E 4S5 CANADA

XUELEI PANG ZUOWEI HUANG 768 QINZHOU RD # 602 BLDG 20 SHANGHAI 200233 CHINA

1217 UNIVERSITY LLC 100 US #1 FLORIDA CITY, FL 33034 1244 ALHAMBRA LLC 1251 S ALHAMBRA CIR CORAL GABLES, FL 33146

1450 PARTNERSHIP LTD C/O EVELYN LANGLIEB GREER PA 5900 SW 97 ST STE 1000 MIAMI, FL 33156

1515 SUNSET LLC 133 SEVILLA AVE CORAL GABLES, FL 33134

2024 LLC 2031 SW 17 TER MIAMI, FL 33145

2319 ALHAMBRA LLC 9300 SW 140 ST MIAMI, FL 33176-6813

6511 SANTONA LLC 2646 SW 130 TER MIRAMAR, FL 33027 ABRAHAM HOLDINGS LLC PO BOX 431439 SO MIAMI, FL 33243-1439

ACV2 REAL ESTATE LLC 3422 FRANKLIN AVE MIAMI, FL 33133 ADVANCED INVEST & CONSULTANTS INC 6580 SANTONA ST #A4 CORAL GABLES, FL 33146 AHMAD RASHID NUZHAT RASHID 7829 SABAL LAKE DR PORT ST LUCIE, FL 34986

ALBERT LENEL &W DORIS & GAVINA IRIAS 5838 SW 74 TER #301 MIAMI, FL 33143 ALEX ZANGEN &W MORELLA DIAZ 6622 TARREGA ST CORAL GABLES, FL 33146-3124

ALEXANDER C SANTEIRO 6615 NERVIA ST CORAL GABLES, FL 33146

ALEXANDER GAVILLA 1280 S ALHAMBRA CIR #1215 CORAL GABLES, FL 33146-3161 ALEXANDER X FERRERA 1280 S ALHAMBRA CIR #1306 CORAL GABLES, FL 33146-3129

ALEXIS ZEQUEIRA 1515 SAN REMO AVE #E-1 CORAL GABLES, FL 33146-3026

ALFONSO JIMENEZ 461 LORETTO AVE CORAL GABLES, FL 33146-2105 ALINA NAVARRO 6511 SANTONA ST #C9 CORAL GABLES, FL 33146

ALLISON LESLIE BURNSIDE TRS 6312 CABALLERO BLVD CORAL GABLES, FL 33146

AMAL SHAMOON HANNA BEDAWED 1280 S ALHAMBRA CIRCLE #1206 CORAL GABLES, FL 33146

AMANDO T SUAREZ &W MARA 6640 TARREGA ST CORAL GABLES, FL 33146-3124 AMBROISE CAPITAL LLC 1280 S ALAHAMBRA CIR # 2415 CORAL GABLES, FL 33146-3145

ANA M BETANCOURT CYNTHIA B PEREZ JTRS 1515 SAN REMO AVE #C-3 CORAL GABLES, FL 33146 ANA MARIA AZCARATE TRS ANA MARIA AZCARATE LIVING TRUST 6617 TARREGA ST CORAL GABLES, FL 33146

ANDREW ST CLAIR HUTCHINSON 1280 S ALHAMBRA CIR #2102 CORAL GABLES, FL 33146 ANDREW ST CLAIR HUTCHINSON 1280 S ALHAMBRA CIRCLE #2106 CORAL GABLES, FL 33146

ANDY REMO LLC 6705 RED ROAD STE 706 CORAL GABLES, FL 33143 ANGEL ANTONIO FULLANA PO BOX 9932 SANTURCE, PR 00908 PUERTO RICO

ANJANAYA PRASAD KORLIPARA RENUKA KORLIPARA 7831 SABAL LAKE DR PORT ST LUCIE, FL 34986 ANN MILNE RAMSAY TRS ANN MILNE RAMSAY TRUST PO BOX 7244 MENLO PARK, CA 94026

ANN S LIEFF & ROSALIND S ZACKS & MICHAEL J & BAYARD W SPECTOR TRS 6212 RIVERA DR CORAL GABLES, FL 33146-3521

ANN SHAH & ANDREW SHAW 1280 S ALHAMBRA CIR UNIT 1205 CORAL GABLES, FL 33146-3161 ANTHONY CHISENA & W MARISA CHISENA CHRISTOPH P DAEPPEN 721 BILTMORE WAY #702 CORAL GABLES, FL 33134

ANTHONY DEL POZZO III NANCY ALARCON DEL POZZO 6616 TARREGA ST CORAL GABLES, FL 33146

ANTHONY ROMEO 6705 RED RD STE 700 MIAMI, FL 33146 ANTHONY ROMEO &W CAROLINA 6705 RED RD #700 CORAL GABLES, FL 33143 ANTONIO E FRIGULS TRS ANTONIO E FRIGULS DECLARATION OF TRUST 1131 MANATI AVE CORAL GABLES, FL 33146

ANTONIO IBANEZ DE SENDADIANO &W BETTY IBANEZ DE SENDADIANO 1280 S ALHAMBRA CIR #2415 CORAL GABLES, FL 33146-3145

ANTONIO J AMADEO 543 W DAVIS BLVD TAMPA, FL 33606

ARLENE CLACHAR 1280 S ALHAMBRA CIR #2419 CORAL GABLES, FL 33146-3145

ARMANDO J HENRIQUEZ & JUDITH HENRIQUEZ 3615 SUNRISE DR KEY WEST, FL 33040

ARWEN RESOURCES LTD 1280 ALHAMBRA CIR #2213 CORAL GABLES, FL 33146

ASHLEY E KIRSNER 9240 SUNSET DR #114 MIAMI, FL 33173

ASHOK AITHARAJU NEHA RADHIKA AITHARAJU 1280 S ALHAMBRA CIR 1213 CORAL GABLES, FL 33146

ASTHMA ALLERGY CENTER OF CORAL GABLES LLC 6705 RED RD #520 CORAL GABLES, FL 33134

ASTURCON LLC 7742 SW 99 STREET MIAMI, FL 33186

ATLANTIC 45 REALTY LLC 6705 RED RD #405 MIAMI, FL 33143

AUDREY GIBELLINI 1280 SO ALHAMBRA CIR #2113 CORAL GABLES, FL 33146-3131

AUDREY GIBELLINI 6800 SW 40 ST #111 MIAMI, FL 33155-3708

AZITA ABBARIN KATHY AHN 13303 REGAL CREST DR CLIFTON, VA 20124

BALU MANI BHAVANI MANI 1280 SOUTH ALHAMBRA CIRCLE #2311 CORAL GABLES, FL 33146

BAPTIST HEALTH S FL INC 6855 RED ROAD STE 600 CORAL GABLES, FL 33143

BAPTIST HEALTH SOUTH FLORIDA INC 6855 RED RD 600 CORAL GABLES, FL 33143

BAPTIST HEALTH SOUTH FLORIDA INC 6855 RED ROAD #500 CORAL GABLES, FL 33143

BAR REAL ESTATE HOLDINGS LLC 6001 SW 85 AVE MIAMI, FL 33143-1535 BARBARA IOANNIDES ALDERMAN 4931 MADISON ST HOLLYWOOD, FL 33021

BEATRIZ HERNANDEZ 6600 SANTONA ST CORAL GABLES, FL 33146-3112 BEVERLY HILLS CAFE VIII INC 5829 SW 73 ST #1 MIAMI, FL 33143

BEVERLY PEAKE 1280 S ALHAMBRA CIR #2313 MIAMI, FL 33146-3132

BLANK SPACE LLC 7758 SW 54 AVE MIAMI, FL 33143 BLUE SKY DEVELOPMENT INC 7641 SW 53 CT MIAMI, FL 33143

BRYAN D SCHAEFER &W GEORGIA C 2252 SW 22 TER MIAMI, FL 33145-3513

BRYAN D SCHAFFER &W GEORGIA M CORBIN 2252 SW 22 TERR MIAMI, FL 33145-3513

BUPCOM INC 1845 NW 112 AVE 211 DORAL, FL 33172

BUTTERFLY JOURNEY LLC 7720 SW 59 CT SOUTH MIAMI, FL 33143-5113 C & J CASTANEDA FAMILY LTD PARN 17885 FIELDBROOK CIRCLE WEST BOCA RATON, FL 33496 CABRAL ACRA FAMILY COMPANY LLC 3062 INDIANA ST MIAMI, FL 33133

CARLOS E NATION MARIA I ARCAYA 6610 SANTONA ST CORAL GABLES, FL 33146

CARLOS ESTALELLA &W MERCEDES 6825 CORSICA ST CORAL GABLES, FL 33146-3713

CARRIEANNE COLOMA 7811 ALTAMIRA AVE CORAL GABLES, FL 33143-6245

CARRIEANNE COLOMA &H CARLOS 7811 ALTAMIRA AVE CORAL GABLES, FL 33143-6245 CASEY SAN REMO LLC 6705 RED RD #318 CORAL GABLES, FL 33143

CENTRAL PARK PROFESSIONAL CENTER 328 CRANDON BLVD STE 221C KEY BISCAYNE, FL 33149-1331

CG 2301 LLC 19333 COLLINS AVE UNIT #2408 SUNNY ISLES BEACH, FL 33160

CHAINS FIRST PROPERTIES LLC PO BOX 025323 MIAMI, FL 33102 CHARTER AMERICA INC 866 S DIXIE HWY CORAL GABLES, FL 33146-2603

CHEE TUN LAI YEE VONG CARMEN TUN 1280 S ALHAMBRA CIR 1210 CORAL GABLES, FL 33146 CHRISTIANNE MAIGRE 6580 SANTONA ST #A24 CORAL GABLES, FL 33146-3156

CHRISTIE S ESCOBAR 13921 LAKE MAHOGANY BLVD #2821 FORT MYERS, FL 33907

CHRISTOPHER A CARR 1355 NICOLET PL DETROIT, MI 48207

CITY OF CORAL GABLES 405 BILTMORE WAY CORAL GABLES, FL 33134 CITY OF CORAL GABLES ALLEY 405 BILTMORE WAY CORAL GABLES, FL 33134

CKL BUILDER GROUP CORP 7455 NW 41 ST MIAMI, FL 33166

CLAUDE DORSY &W MAUREEN T 7740 SW 104 ST MIAMI, FL 33156-3195

CLAVIKE LLC 799 CRANDON BLVD #504 KEY BISCAYNE, FL 33149-2554 CORAL GABLES FEDL S & L ASSN % FIRST UNION NTL BANK PO BOX 2609 CARLSBAD, CA 92018

CVG MANAGEMENT COMPANY LLC 9402 SW 88 CT MIAMI, FL 33176 CYELL CORNER LLC 12471 SW 72 AVE MIAMI, FL 33156

D L H B INVESTORS GROUP 20201 E COUNTRY CLUB # 2703 AVENTURA, FL 33180

D L H B INVESTORS GROUP INC 20201 EAST COUNTRY CLUB DR #2703 AVENTURA, FL 33180 DANIEL B CRUSE EST OF 6580 SANTONA ST #A27 CORAL GABLES, FL 33146-3156

DANIEL L HERRERA 3170 NORTH SHERIDAN RD #1126 CHICAGO, IL 60657 DARIO L JARAMILLO 1338 STANFORD ST #D SANTA MONICA, CA 90404 DAVID A FREEDMAN & KIMBERLY J FREEDMAN JTRS 3561 CRYSTAL VIEW CT MIAMI, FL 33133

DAVID GUTIERREZ &W ROXANNE 3 MARION WAY LAGRANGEVILLE, NY 12540 DAVID P GROSSINGER AMY GROSSINGER
SYLVIA GROSSINGER
1515 SAN REMO AVE B-3
CORAL GABLES, FL 33146

DAVID RODRIGUEZ JESSICA LERA RODRIGUEZ 6630 TARREGA ST CORAL GABLES, FL 33146

DAVID SWIATLO JACK GONOGA CORP 276 CHULA VISTA ST SANTE FE, NM 87501 DELILAH ALONSO MD LLC 6705 RED ROAD STE 518 CORAL GABLES, FL 33143 DIANA DAVILA 3500 CORAL WAY #1108 CORAL GABLES, FL 33145

DIANE J SUKIENNIK 6511 SANTONA AVE #C16 CORAL GABLES, FL 33134-6314 DOLORES M LONGO 960 BAY DR #907 MIAMI BEACH, FL 33141-5644

DOLORES M LONGO 1280 S ALHAMBRA CIR UNIT 1411 CORAL GABLES, FL 33146-3130

DUNVEGAN1 LLC 1260 MENDAVIA AVENUE CORAL GABLES, FL 33146 EDEN HOLDINGS LLC PO BOX 191292 MIAMI BEACH, FL 33119 EDGAR JONES &W SUSAN 515 TIVOLI AVE CORAL GABLES, FL 33143-6346

EDGARDO ROTMAN 1280 S ALHAMBRA CIR UNIT 1312 CORAL GABLES, FL 33146-3129 EDSON EIJI NAKAMURA 3048 NW 28 TERR BOCA RATON, FL 33434 EDWARF S WEISFELNER 555 W 59 ST NEW YORK, NY 10019

EILEEN AKEMI NAKAMURA 3048 NW 28 TERR BOCA RATON, FL 33434 ELENA BUSTILLO 5240 SW 72 AVE MIAMI, FL 33155-5511

ELIZABETH HOGAN 1515 SAN REMO AVE #C6 CORAL GABLES, FL 33146

EMMA R DEZA 6580 SANTONA ST A17 CORAL GABLES, FL 33146 ESQUINA SANTONA LLC C/O HOLLAND AND KNIGHT LLP 701 BRICKELL AVE 3300 MIAMI, FL 33131

ESTHER M GONZALEZ TRS 6580 SANTONA ST APT 15 CORAL GABLES, FL 33146 EWD SAN REMO LLC 10615 LAKESIDE DRIVE CORAL GABLES, FL 33156 FAROUK HAMDY &W MONA & DINA HAMDY 13234 OSTERPORT DR SILVER SPRING, MD 33146-3129 FEDERICO JEN &W ROSITA 5978 NW 74 TERR PARKLAND, FL 33067

FEDERICO JUAN PABLO JOST CARMEN CECILIA JOST 1172 S DIXIE HWY APT 553 CORAL GABLES, FL 33146 FIRST UNITED METHODIST CHURCH OF SOUTH MIAMI 6565 SW 57 AVE SOUTH MIAMI, FL 33143

FLORES FAMILY HOLDINGS LLC 6705 RED RD #400 CORAL GABLES, FL 33143

FOUR MARCHING FISH LLC 8355 MENYEITH TERR MIAMI LAKES, FL 33016-1432 FRIEDLAND INVESTMENT GROUP LLC 1430 S DIXIE HWY 305 CORAL GABLES, FL 33146 FYJ LLC 184 NE 168 ST NO MIAMI, FL 33162

G E N O 1430 LLC 1430 S DIXIE HWY STE 202 CORAL GABLES, FL 33143 GABLES SANTONA LLC 265 SEVILLA AVE CORAL GABLES, FL 33134 GABRIEL HORACIO DALMAU 6622 SANTONA ST CORAL GABLES, FL 33146

GARNET & CARBONELL HOLDINGS LLC 6705 RED RD #312 CORAL GABLES, FL 33143 GARSH INVESTMENTS LLLP 1430 S DIXIE HWY UNIT 309 MIAMI, FL 33143 GBA WELLNESS LLC 6705 RED RD #408 CORAL GABLES, FL 33143

GEORGE PRENDES &W BEATRIZ 1515 SAN REMO AVE #D-5 MIAMI, FL 33146 GEORGE W PRENDES 1515 SAN REMO AVE A-4 MIAMI, FL 33146 GIANPAOLO TASSO 389 DURANT WAY MILL VALLEY, CA 94941

GIANPAOLO TASSO &W MONICA 389 DURANT WAY MILL VALLEY, CA 94941 GLORIA LEAL 1280 S ALHAMBRA CIR UNIT 1308 CORAL GABLES, FL 33146-3129 GORDON NARAYANSINGH JTRS LAURA NARAYANSINGH JTRS 1280 SOUTH ALHAMBRA CIRCLE #2110 CORAL GABLES. FL 33146

GRACE HOLDINGS & INVESTMENTS LLC 6705 RED RD #702 SOUTH MIAMI, FL 33143

GRACE R MEANY 23 OLCOTT LN BERNARDSVILLE, NJ 07924 GRACIELA C GRIENER & MARIA S GONZALEZ 13232 SW 52 TERRACE MIAMI, FL 33175

GUILLERMO FERNANDEZ TRS DORIS B FERNANDEZ TRS 151 SE 15 RD UNIT 802 MIAMI, FL 33129

GUY R SCHUTZEUS 50 SOUTH 7 ST PITTSBURGH, PA 15203 HEATHER R WEISSMAN 144 E 84 ST # 11H NEW YORK, NY 10028

HECTOR ALEJANDRO TREJO 1825 PONDE DE LEON BLVD 388 CORAL GABLES, FL 33134 HELEN GRAY LAURA GRAY KLINE 1280 S ALHAMBRA CIR 2310 CORAL GABLES, FL 33146 HENRY IUKIO NAKAMURA 3048 NW 28 TERR BOCA RATON, FL 33434 HOWARD & DUSTIN GREENBERG 1280 S ALHAMBRA CIR #1413 CORAL GABLES, FL 33146-3130 HUGO PEREZ TRS HUGO PEREZ & NEOLIA PEREZ REV TR NEOLIA PEREZ TRS 6621 NREVIA ST CORAL GABLES, FL 33146

HUMBERTO DE LARA TOMAS BURCET 1430 S DIXIE HWY #321 CORAL GABLES, FL 33146

IGNACIO M RIVEIRA JR &W ARIELLE C 1204 HARDEE RD CORAL GABLES, FL 33146-3231 IRIS & VANESSA GERSNY 791 CRANDON BLVD #503 KEY BISCAYNE, FL 33149 ISAMARO HOLDINGS LLC 1280 ALHAMBRA CIR 2214 CORAL GABLES, FL 33146

IVAN HANUSZKIEWICZ & JUAN P HANUSZKIEWICZ JTRS 1280 S ALHAMBRA CIR #1111A CORAL GABLES, FL 33146-3147

J S REALTY LLC 6705 RED ROAD STE 708 CORAL GABLES, FL 33143 JACK W BAGWELL 7700 GRAY SHOALS DR COLUMBUS, GA 31904

JACNIC LLC 6705 RED RD #500 CORAL GABLES, FL 33143-3644 JACQUELINE SENYITKO 27 NEW BOSTON CT DANVILLE, CA 94526 JAMES DOUGHERTY 6511 SANTONA ST C20 SOUTH MIAMI, FL 33146-3149

JANET MEDINA 7220 RED RD MIAMI, FL 33143 JAY W NICKELS TRS RITA IRENE NICKELS TRS 15026 MCKENDREE AVE PACIFIC PALISADES, CA 90272

JEFF SCHRAM 1215 HARBOR ISLAND WALK BALTIMORE, MD 21230

JERRY KATZEN BARBARA KATZEN ELIZABETH KATZEN 2630 HILOLA ST MIAMI, FL 33133 JESSE S LEIGHTON JTRS MAUREEN L GORE JTRS GAVIN M LEIGHTON JTRS 4252 MECHANICSVILLE RD MECHANICSVILLE, PA 18934

JESSICA RAFFO TRS J RAFFO LIVING TRUST 6580 SANTONA ST A21 CORAL GABLES, FL 33146

JOHN C FLANNIGAN 6365 COLLINS AVE #1601 MIAMI BEACH, FL 33141 JOHN C L FLANNIGAN 6365 COLLINS AVE #1601 MIAMI, FL 33141 JOHN D ACTON &W JACQUELINE 6041 SW 9 ST PLANTATION, FL 33317

JOHN D ACTON &W JACQUELINE S 27 NEW BOSTON CT DANVILLE, CA 94526 JOHN FLANNIGAN 6365 COLLINS AVE #1601 MIAMI, FL 33141 JOHN M RODRIGUEZ &W ILEANA M 6601 TARREGA ST CORAL GABLES, FL 33146-3123

JOHN PAUL LEON 2396 SW 21 TERR MIAMI, FL 33145-3505 JOHN ROCK MARTHA ROCK 700 CORAL WAY #2 CORAL GABLES, FL 33146 JOHN UNDERWOOD DARDEN 1360 S DIXIE HWY CORAL GABLES, FL 33146-2904

JOHNNY DIAZ 6565 SANTONA ST B23 CORAL GABLES, FL 33146 JONATHAN A HAMEL LAURA B HAMEL 6630 SANTONA ST CORAL GABLES, FL 33146 JORGE BALLESTE &W BEATRIZ BUSTILLO 8560 SW 149 TERR MIAMI, FL 33158-1950 JOSE ALTET &W MARIA L 1515 SAN REMO AVE #E-9 CORAL GABLES, FL 33146-3084 JOSE L MARQUEZ PRIETO KECIA L KIPLING DE MARQUEZ 65 W NORTH AVE LAKE FOREST, IL 60045

JOSEPH G SCLAFANI & ALBA M RIVAS 6580 SANTONA ST #A23 CORAL GABLES, FL 33146-3156

JR2G LLC 1430 S DIXIE HIGHWAY SUITE 316A MIAMI, FL 33143 JUAN CARLOS REDERO 6580 SANTONA ST #A2 CORAL GABLES, FL 33146-3156 JUAN J COVIELLA QUISQUEYA O COVIELLA 7742 SW 99 ST #12 MIAMI, FL 33156

JULIA ANN NATEMAN 13603 SW 102 CT MIAMI, FL 33176-6664

JULIE DESTEFANO 1280 S ALHAMBRA CIR # 1116 CORAL GABLES, FL 33146 KAREN & ERIC L SCHROLL JTRS 8130 A1A SOUTH UNIT B-12 SAINT AUGUSTINE, FL 32080

KARITIN LLC 1280 S ALHAMBRA CIR # 1203 CORAL GABLES, FL 33146 KATHLEEN J PETERS 6580 SANTONA ST 38A CORAL GABLES, FL 33146-3170 KATRINA GONZALEZ LANDA 6511 SANTONA ST #C-19 CORAL GABLES, FL 33146

KEITH KURLAND &W EVE 5114 GODFREY RD CORAL SPRINGS, FL 33067 KENDALL R NICHOLS SUSAN S NICHOLS 18 STONE DR NORTHBOROUGH, MA 01532 KEVIN WONG & RAYMOND WONG &W JULIANA JTRS 6580 SANTONA ST #A-9 CORAL GABLES, FL 33146

KPTTV INC 5955 PONCE DE LEON BLVD CORAL GABLES, FL 33146

LAND 1 LTD 1553 SAN IGNACIO AVE CORAL GABLES, FL 33146-3006 LAND TRUST SERVICE CORP TRS TRUST NO 6705 PO BOX 186 LAKE WALES, FL 33859

LARO INC 6800 NERVIA ST CORAL GABLES, FL 33146-3614 LAUBREN LLC 3628 HARLANO ST CORAL GABLES, FL 33134 LEE D YODER &W MARGARET TODD YODER JTRS 6270 SW 49 ST MIAMI, FL 33155

LESLIE SCHROEDER 5877 SW 54 COURT DAVIE, FL 33314 LESTER LANGER &W SHARON 446 MAJORCA AVE CORAL GABLES, FL 33134-4220 LILLIAN K PETERS 1515 SAN REMO AVE #B-5 CORAL GABLES, FL 33146-3063

LINDA DIANE MITCHELL TRS LINDA DIANE MITCHELL AND KEITH ALLEN MITCHELL LIV TRUST 5521 SW 65 CT MIAMI, FL 33155

LINDA GARRETT &H MICHAEL GARRETT 10415 WINDSOR VIEW DR POTOMAC, MD 20854 LINGLING QIN 1280 S ALHAMBRA CIR # 2410 MIAMI, FL 33146

LORI ANN CHEADLE 6617 SANTONA ST CORAL GABLES, FL 33146 LOURDES V SEGRERA 6604 SANTONA ST CORAL GABLES, FL 33146-3112

LUCY DE LA VEGA 6635 TARREGA ST CORAL GABLES, FL 33146-3123 LUGER LLC 6705 RED RD #402 MIAMI, FL 33012-6605 LUIS FERNANDO MARQUINA 830 ALMERIA AVE CORAL GABLES, FL 33134 M B MEDICAL GROUP LLC 6705 RED RD #510 MIAMI, FL 33143

M B MEDICAL GROUP LLC 6705 RED RD #512 CORAL GABLES, FL 33143 MADRUGA INVEST LLC BANK OF AMERICA NC1-001-03-81 101 N TRYON ST CHARLOTTE, NC 28255

MANUEL R LLANO &W MARTHA 1120 HARDY RD CORAL GABLES, FL 33146-3229

MANUEL R LLANO &W MARTHA V & GRACIELA SILVERIO 6580 SANTONA ST #A35 MIAMI, FL 33146-3156

MANUEL R LLANO MARTHA LLANO 3419 GRANADA BLVD CORAL GABLES, FL 33133

MANUEL TARACIDO 100 ANDALUSIA AVE #803 CORAL GABLES, FL 33134

MARIA ANGELES UNAMUNO CARLOS EDUARDO GOMEZ ROJAS 1280 S ALHAMBRA CIRCLE #1427 CORAL GABLES, FL 33146

MARIA ISABEL ANCA 7730 SW 61 AVE SOUTH MIAMI, FL 33143 MARIO J T BENEDETTI 1430 SOUTH DIXIE HWY #201 CORAL GABLES, FL 33146

MARJORIE C GORDON 497 DERBY LA ORANGE, CT 06477 MARTIN W SPECTOR IRREVOC TRUST 6212 RIVIERA DR CORAL GABLES, FL 33146-3521

MAUREEN DONNELLY 1280 S ALHAMBRA CIR #1425 CORAL GABLES, FL 33146-3130

MAURICE MILTON 528 LUENGA AVE CORAL GABLES, FL 33146 MAX BLAYA MARGARITA SHLI BLAYA MARTIN BLAYA 1280 S ALHAMBRA CIR #2314 CORAL GABLES, FL 33146

MAYUMI O TODD &H ROCK 9460 EASTER RD MIAMI, FL 33157-8724

MEP REAL EST LLC 28 IMPERIAL DR CHERRY HILL, NJ 08003 MERISSA WAN WEI CHEN WAI KONG CHEN 1280 S ALHAMBRA CIR #2305 CORAL GABLES, FL 33146 MERODIO HOLDINGS LLC 9720 SW 72 AVE MIAMI, FL 33156

MFZ MANAGEMENT CORP 6705 RED ROAD STE 502 CORAL GABLES, FL 33143

MFZ MANAGEMENTCORPORATION 6705 RED ROAD #503 CORAL GABLES, FL 33143 MIAMI-DADE COUNTY MIAMI-DADE TRANSIT 701 NW 1 CT STE 1700 MIAMI, FL 33136

MICHAEL CABANAS MARY KATHERINE CABANAS 6609 SANTONA ST CORAL GABLES, FL 33146

MICHAEL DE NARVAEZ 1280 S ALHAMBRA CIR #1204 CORAL GABLES, FL 33146-3161 MICHAEL GALLANDER TRS MICHAEL GALLANDER REVOC TR 1280 S ALHAMBRA CIR 2315 CORAL GABLES, FL 33146

MICHAEL JOSEPH VOLLERO JAMES BARRY VADEN 1280 SOUTH ALHAMBRA CIR 1209 CORAL GABLES, FL 33146

MICHAEL L MACKNIN &W CAROL H 24525 HILLTOP DR BEACHWOOD, OH 44122

MICHAEL RUGGERIO 6580 SANTONA ST #A-16 CORAL GABLES, FL 33146-3156 MICHAEL SPECTOR ET AL TRS 6212 RIVIERA DR CORAL GABLES, FL 33146 MICHELLE C FERNANDEZ 10650 SW 76TH AVE MIAMI, FL 33156-3879 MIGUEL A ALVAREZ LORI A LOVE MADISON ALVAREZ 3632 CEDARBRAE LN SAN DIEGO, CA 92106

MIND2MIND LLC 12745 SW 69 AVE PINECREST, FL 33156-6220 MING LON YONUG TRS YOUNG FAMILY TR SU FEN YOUNG TRS 7600 SW 124 ST PINECREST, FL 33156 MIRTA MIRANDA & ALEIDA A GONZALEZ &H SILVANO 2645 S BAYSHORE DR APT 502 MIAMI, FL 33133-5433

MISAEL GONZALEZ &W CATALINA PO BOX 160482 MIAMI, FL 33116

MISSU LLC 1110 BRICKELL AVE #512 MIAMI, FL 33131 MIXED NUTS LLC 332 WILSHIRE DR NUTLEY, NJ 07110

MONA SCHAU MIKI Q SCHAU 1280 S ALHAMBRA CIR 2304 CORAL GABLES, FL 33146

MONTJUIC INC 6705 RED ROAD SUITE 314 CORAL GABLES, FL 33143 MOUNTAIN FLOWER LLC 1545 SAN REMO AVE #103 CORAL GABLES, FL 33143

NAMOR HOLDINGS LLC 1520 CONSOLATA AVE CORAL GABLES, FL 33136

NANCY SCALFANI 6580 SANTONA ST A-31 CORAL GABLES, FL 33146-3156 NEW EMUNA LLC 18800 NE 29 AVENUE #316 AVENTURA, FL 33180

NEWTECH SOLUTIONS GROUP CORP 1430 S DIXIE HWY #308 CORAL GABLES, FL 33146 NEWTON HIDERKY NAKAMURA 3048 NW 28 TERR BOCA RATON, FL 33434 NOITE LLC 414 MALLARD LANE WESTON, FL 33327

NOITE LLC 141 MALLARD LANE WESTON, FL 33327 NORMAN CHRISTIE KAREN CHRISTIE 1280 S ALHAMBRA CIR # 2202 MIAMI, FL 33146 OCEAN BLUE REALTY HOLDINGS LLC 6705 RED RD STE 418 CORAL GABLES, FL 33146

OLIVEIRA RENTALS LLC 1805 NW 79 AVE DORAL, FL 33126

OOR LLC 6705 RED ROAD #412 CORAL GABLES, FL 33143 ORDUNA GROUP LLC 5656 SW 75 AVE MIAMI, FL 33143

ORTHO RLTY HOLDINGS LLC PO BOX 431050 MIAMI, FL 33243 OSCAR CASTELLANO LAURA GARCIA 6601 SANTONA ST CORAL GABLES, FL 33146 PABLO X & CARMEN L BURGOS & ROSA ANA BURGOS 1280 SO ALHAMBRA CIR #1415 CORAL GABLES, FL 33146-3130

PABLO X BURGOS &W CARMEN L 1280 SO ALHAMBRA CIR UNIT 1408 CORAL GABLES, FL 33146-3130

PABLO X BURGOS &W CARMEN L BURGOS 1248 S ALHAMBRA CIR CORAL GABLES, FL 33146-3105

PAMELA L BRIAN JAMES M BRIAN 105 AIRLINE LN HUMMELSTOWN, PA 17036 PARK PLACE CENTRE LLC 901 PONCE DE LEON BLVD STE 505 CORAL GABLES, FL 33134 PAT & JULIO LLC 6705 RED RD #714 CORAL GABLES, FL 33143 PETER N WOOD &W TERESA P SIERRA 6604 TARREGA ST CORAL GABLES, FL 33146-3124

PHILLIP A LEVITZ 1550 SOUTH DIXIE HWY #215 CORAL GABLES, FL 33146-3034 PLNA VI LLC 6705 SW 57 AVE STE 420 MIAMI, FL 33143 PLUMER PROPERTIES LTD PRTNRSHP & RICH-CHRIS CORP 5915 PONCE DE LEON BLVD #19 CORAL GABLES, FL 33146-2435

POLYCHRONIS THEODORIDIS JTRS PHAEDRA THEODORIDIS JTRS 1280 S ALHAMBRA CIRCLE #1402 CORAL GABLES, FL 33146

PRABHAT VARMA MEERA VARMA 207 BITTERN COURT NEW HARTFORD, NY 13413

PREM TARA LLC 4849 RONDA STREET CORAL GABLES, FL 33146

PREM TARA TWO LLC 4849 RONDA STREET CORAL GABLES, FL 33146 PRUDENTIAL INSURANCE CO AMERICA 1541 SUNSET DRIVE # 300 MIAMI, FL 33143 PUBLIX SUPER MARKETS INC 3300 PUBLIX CORPORATE PKWY LAKELAND, FL 33811

QUANLUM GOU JINGWEI GOU 1280 S ALHAMBRA CIRCLE #2108 CORAL GABLES, FL 33146

R SCOTT DARDEN 806 ALTAR AVE CORAL GABLES, FL 33146-1219 RAFAEL FELIZ PO BOX 4615 VEGA BAJA PUERTO, PR 00694-4615

RAFAEL FELIZ LEBREAULT PO BOX 4615 VEGA BAJA PUERTO, PR 00694-4615 RAFFOUL AJAMI TRS 7860 NW 55 ST MIAMI, FL 33166 RAMI I SAMI 1280 S ALHAMBRA CIR #1114 CORAL GABLES, FL 33146

RAUL & TONI GREENHOUSE PROPERTIES LLC 1430 S DIXIE HWY #319 MIAMI, FL 33146

RAZAK A DOSANI 1210 CLEBURNE DR FORT MYERS, FL 33919 RFO VENTURES LLC 285 RADA CT CORAL GABLES, FL 33143

RICHARD A & HAYLIE HOFFMAN 1280 S ALHAMBRA CIR #1101 CORAL GABLES, FL 33146-3128 RICHARD D MORALES DMD PA 1430 SO DIXIE HWY #312 CORAL GABLES, FL 33146 RICHARD D MOSS SHERRY L MOSS HALEY L MOSS 1280 S ALHAMBRA CIR 1207 CORAL GABLES, FL 33146

RICHARD DOGGART 217 N ALTADENA AVE ROYAL OAK, MI 48067 RICHARD J HOFMAN &W JO V 13070 NW 8 CT SUNRISE, FL 33325 RIVIERA PLAZA HOLDINGS LP C/O WEXFORD CAPITAL LP 411 W PUTNAM AVE GREENWICH, CT 06830

ROATTSKY LLC 1430 S DIXIE HWY 316B CORAL GABLES, FL 33146 ROBERT C GREEN 430 SUNSET DR CORAL GABLES, FL 33143

ROBERT HILL JENNIFER FERRISS HILL 1280 S ALHAMBRA CIR #2206 MIAMI, FL 33146 ROBERTO ADSUAR &W RUTH 1360 LUCHETTI ST # 5 SANTURCE, PR 00907 PUERTO RICO

ROBIN TURETSKY 6580 SANTONA ST A43 MIAMI, FL 33146 ROCKET RIDERS PICTURE 500 S DIXIE HWY # 202 CORAL GABLES, FL 33146

RODOLFO PAEZ ZADY MARIA PIEDRAHITA BRUN 1280 S ALHAMBRA CIR 2214 CORAL GABLES, FL 33146

ROGER A BRIDGES (TR) 3051 S PONTE VEDRA BLVD PONTE VEDRA BEACH, FL 32082 RONALD SMITH &W PHYLLIS & MELISSA SMITH 142 RIDGEMONT CIR SE PALM BAY, FL 32909

ROSA ANA BECDACH DE BURGOS & RODRIGO BURGOS
1280 S ALHAMBRA CIR #2413
CORAL GABLES. FL 33146-3145

ROXANA CERULIA 1825 PONCE DE LEON BLVD #388 CORAL GABLES I, FL 33134 RUOYANG WANG MEIZI LIU 6565 SANTONA ST # B8 CORAL GABLES, FL 33146

SABO PROPERTIES LP 11434 FM 2093 FREDERICKSBURG, TX 78624-7230 SABRINA LAFOND & ALIX L LAFOND &W MARGARETH DEJAN 1280 S ALHAMBRA CIRCLE APT 2404 CORAL GABLES, FL 33146

SAGER MANAGEMENT CORP 16100 EMERALD ESTATES DR 280 WESTON, FL 33331

SALLY S WILSON PO BOX 366 OCEAN CITY, NJ 08226 SAMIR TAHA 6915 RED ROAD SUITE 205 CORAL GABLES, FL 33143 SAN REMO DENTAL LLC 6705 RED RD #308 CORAL GABLES, FL 33143

SAN REMO ENT ENTERPRISES I LLC 8940 N KENDALL DR # 504E MIAMI, FL 33176-2150

SAN REMO ENT ENTERPRISES II LLC 8940 N KENDALL DR # 504E MIAMI, FL 33176-2150 SAN REMO ENT ENTERPRISES III LLC 6705 RED ROAD 508 CORAL GABLES, FL 33143

SAN REMO OFFICE ASSOC REALTY LLC 80 SW 8TH STREET SUITE 2400 MIAMI, FL 33131 SAN REMO PROFESSIONALS LLC 6705 RED ROAD #608 CORAL GABLES, FL 33143 SAN REMOS LLC 6705 RED RD #606 MIAMI, FL 33143

SAN ROMAN INVESTMENTS LLC 5965 PONCE DE LEON BLVD CORAL GABLES, FL 33146 SANDRA L VAUCHER 1929 NE 31st Ave Fort Lauderdale, FL 33305-1814 SANTIAGO P ROSELL TRS ELISA DE VELASCO TRS TERESITA MARIA ROSELL 1280 S ALHAMBRA CIR 1325 CORAL GABLES, FL 33146

SANTONA 172 REALTY LLC C/O ABC PROPERTIES EQUITIES LLC 152 W 57 ST 12 FLOOR NEW YORK, NY 10019

SANTONA 1922 INVESTMENTS LLC 2684 EDGEWATER CT WESTON, FL 33332 SANTONA 314 LLC 6405 NW 36 ST #213 MIAMI, FL 33166

SANTONA CORNER 320 LLC 925 S ALHAMBRA CIR CORAL GABLES, FL 33146 SANTONA CORNER LLC 6915 RED ROAD STE 205 CORAL GABLES, FL 33143 SANTONA CORNER UNIT 310 LLC 1430 S DIXIE HIGHWAY #310 MIAMI, FL 33146 SANTONA ENTERPRISES LLC 2140 W 68 ST # 300 HIALEAH, FL 33016 SANTONA HOLDINGS LLC 1390 S DIXIE HWY 1104 CORAL GABLES, FL 33146 SANTONA OFC LLC 435 LEUCADENDRA DR MIAMI, FL 33156

SANTONA QUARTERS LLC 1430 S DIXIE HWY STE 315 CORAL GABLES, FL 33146-3174 SANTONA RENTALS LLC 5301 NW 74 AVE MIAMI, FL 33166 SARVESWARYDEVI THEVARAJAH 6841 SW 71 AVE MIAMI, FL 33143

SCHOOL BOARD OF MIAMI DADE COUNTY 1450 NE 2 AVE MIAMI, FL 33132 SCOTT ALLAN FORBES 1280 S ALHAMBRA CIR #1302 CORAL GABLES, FL 33146-3157

SEDAT LEE YELKIN 1280 S ALHAMBRA CIR #2201 CORAL GABLES, FL 33146-3166

SEKOFF INVESTMENTS 1110 S DIXIE HWY CORAL GABLES, FL 33146 SHARON MADIA &H MICHAEL 5233 EAST RIVER RD GRAND ISLAND, NY 14072 SHAWN HOLTZMAN 1515 SAN REMO AVE #D-9 CORAL GABLES, FL 33146-3083

SHAWN P MARCOTTE &W ANAMAE G 7966 SW 86 TER MIAMI, FL 33143 SHOURASENI S ROY OLIVER H MARTIN 1280 S ALHAMBRA CIR # 1202 CORAL GABLES, FL 33146 SIDNEY L KAHN IV &W SUSAN M 1465 WILLIOW LAKE DR CHARLOTESVILLE, VA 22902

SIDNEY WEISS RUTH ELLEN WEISS 7760 GLENDEVON LN DELRAY BEACH, FL 33446 SILVER RIDGE LLC 451 RIDGE RD CORAL GABLES, FL 33143 SOL MARIA BORRAY JTRS LUIS FERNANDO BORRAY JTRS ANA B BORRAY JTRS 6580 SANTONA ST #A37 CORAL GABLES, FL 33146-3156

SONIA RIVERA 6605 NERVIA ST CORAL GABLES, FL 33146-3119 SRO516 LLC 6705 RED ROAD # 516 MIAMI, FL 33143 SSD FUND NO 1 LTD 6705 RED RD #604 MIAMI, FL 33146

SSVS INVESTMENTS LLC 6705 RED ROAD #504 CORAL GABLES, FL 33143 STEPHANIE Y PACKER 6611 NERVIA ST CORAL GABLES, FL 33146-3119 STEVEN SADOWSKI 6565 SANTONA ST #B2 MIAMI, FL 33146-3155

SUNSET PLACE LUXURY HOLDINGS LLC 3470 NW 82 AVE STE 988 DORAL, FL 33122 SUNSHINE GASOLINE DISTR INC 1650 NW 87 AVE DORAL, FL 33172

SUSAN E CHETWOOD & EDNA M 6612 TARREGA ST CORAL GABLES, FL 33146-3124

SWEET ELG PROPERTIES LLC 1548 S DIXIE HWY CORAL GABLES, FL 33146-3001 TAMARINDO LLC C/O MAZZEI REALTY SERVICES INC 1550 MADRUGA AVE STE 150 CORAL GABLES, FL 33146

TARPON COVE ISLAMORADA LLC 928 ANDRES AVE CORAL GABLES, FL 33134 TARPON COVE ISLAMORADA LLC HDS CONSTRUCTION COMPANY 928 ANDRES AVE CORAL GABLES, FL 33134

TCHAD MARIE ANDERSON 1515 SAN REMO AVE #E-3 CORAL GABLES, FL 33146-3026

TCP 4 LLC 888 S ANDREWS AVE #204 FT LAUDERDALE, FL 33316

TERESITA R GUERRERO 51 STADTMAUER DRIVE CLIFTON, NJ 07013 TERESITA V WALSH (LE) REM ESTEFANIA V WALSH 1280 S ALHAMBRA CIR APT 2411 CORAL GABLES, FL 33146-3145

THE BARROS CORP 5921 SW 87th St Miami, FL 33143-8153

THOMAS FRANK TIPTON JR TRS MARGARET
M TIPTON BLACKETT
423 THUMPER THOROUGHFARE
KEY LARGO, FL 33037

THOMAS G PERKINS &W BONNIE G 11220 SW 57 CT MIAMI, FL 33156-5013 TIMOTHY BULOW MAX BLAYA MARGARITA SAHLI BLAYA 1280 S ALHAMBRA CIR 2219 CORAL GABLES, FL 33143

TMICS LLC 5340 FAIRCHILD WAY CORAL GABLES, FL 33156 TODD A SARANGOULIS FRANKIE LYN SARANGOULIS 347 MAPLE GROVE RD MOHNTON, PA 19540

TONY ROMEO &W CAROLINA ROMEO 8951 SW 62 CT PINECREST, FL 33156

UNIVERSITY INN 1403 LLC 275 N COCONUT LANE MIAMI, FL 33139

UNIVERSITY INN 2208 LLC 7521 SW 92 CT MIAMI, FL 33173 UNIVERSITY INN 2402 LLC 275 N COCONUT LANE MIAMI, FL 33139

UNIVERSITY INN 2412 LLC 275 N COCONUT LANE MIAMI, FL 33139 UNIVERSITY OF MIAMI 1320 S DIXIE HIGHWAY #705 CORAL GABLES, FL 33146 UNIVERSITY OF MIAMI % R E OFFICE PO BOX 248106 CORAL GABLES, FL 33124

UNIVERSITY OF MIAMI GABLES ONE TOWER 1320 S DIXIE HWY STE 1250 CORAL GABLES, FL 33146 UNIVERSITY OF MIAMI INS & R E OFFICE PO BOX 248106 CORAL GABLES, FL 33124

VALIOUS FLORIDA CORPORATION 1515 SAN REMO AVE #F-1 CORAL GABLES, FL 33146

VIKYLINK LLC 110 SW 12 ST 1703 MIAMI, FL 33130 VIVIAN JAIME VANESSA MARTIN AGUSTINA JAIME 1652 SW 11 TER MIAMI, FL 33135

VOLODYMYR ADAMKOVYCH 110 SW 12 ST UNIT 1703 MIAMI, FL 33130

VRBC LLC 1535 MADRUGA AVE CORAL GABLES, FL 33146-2720 WHITTWELL FAMILY CO LLC 6705 RED RD #416 CORAL GABLES, FL 33134 WILLIAM DANIELS JR EST OF 6565 SANTONA ST #B5 MIAMI, FL 33146-3155

WILLIAM H NEWTON 1000 BRICKELL AVE STE # 1025 MIAMI, FL 33131

WILSON W SIMS TRS 1430 S DIXIE HIGHWAY UNIT 318 MIAMI, FL 33146

WIND 304 LLC 6705 RED RD STE 304 CORAL GABLES, FL 33146 WINDSOR INVESTMENTS 5877 PONCE DE LEON LLC 28 TAHITI BEACH ISLAND RD CORAL GABLES, FL 33143

WINDSOR INVESTMENTS LLC 28 TAHITI BEACH ISLAND RD CORAL GABLES, FL 33143

XAVIER A VITERI &W ESTHER E 6635 NERVIA ST CORAL GABLES, FL 33146-3119

YOSES 57 HOLDINGS INC 1430 S DIXIE HWY #321 CORAL GABLES, FL 33146-3175

YUAN ZHAO CHUN ZHOU 1280 S ALHAMBRA CIR 2306 CORAL GABLES, FL 33146 ZULAY SUAREZ DE RUIZ 1515 SAN REMO AVE UNIT A6 CORAL GABLES, FL 33146 Charles Knight FPL 4200 W. Flagler St. Miami, Florid 33134

Kelly Faul XO Communications, Inc. 13865 Sunrise Valley Dr Reston, VA 20190

TCG of South Florida 150 South Monroe Street, Suite 400 Tallahassee, FL 32301-1561

Mr. John Bachelder, OSP National Support Invest. MCI World Com, Dept. 42864 Loc 107 2400 North Glenville Richardson, TX 75082 Odalys Bello, Professional Surveyor & Mapper Miami Dade Water & Sewer Dept. 3575 S. LeJeune Road Miami, FL. 33146-2221

Leonard Maxwell-Newbold, Reg.Permit Adm. Comcast/Southern Div. RDC 2601 S.W. 145 Ave. Miramar, FL 33027

John Shen, PH D., PTOE, Dir. Chief Miami Dade County Traffic Signals & Signs Div. 7100 NW 36th St. Miami, FL. 33166

Kathy San Pedro AT&T 7325 SW 48th Street, 2nd Floor Miami, FL 33155

Legal Regulatory Affairs Adelphia Business Solutions 1 North Main Street Coudersport, PA 16915

Thomas Marko, Development Coordinator Miami Dade Water and Sewer Dept. 3575 S. LeJeune Road Miami, FL 33146-2221

Mr. Bernabe Macias, Jr. S.E. Network Operations Const/Eng Sf; District AT&T Florida 9101 Coral Way Miami, FL 33165

MIAMI DAILY BUSINESS REVIEW

Published Daily except Saturday, Sunday and Legal Holidays Miami, Miami-Dade County, Florida

STATE OF FLORIDA COUNTY OF MIAMI-DADE:

Before the undersigned authority personally appeared MARIA MESA, who on oath says that he or she is the LEGAL CLERK, Legal Notices of the Miami Daily Business Review f/k/a Mlami Review, a daily (except Saturday, Sunday and Legal Holidays) newspaper, published at Miami in Miami-Dade County. Florida: that the attached copy of advertisement, being a Legal Advertisement of Notice in the matter of

NOTICE OF PUBLIC HEARING CITY OF CORAL GABLES - LOCAL PLANNING AGENCY/PLANNING AND ZONING BOARD - JULY 12, 2017

in the XXXX Court. was published in said newspaper in the issues of

06/29/2017

Affiant further says that the said Miami Daily Business Review is a newspaper published at Miami, in said Miami-Dade County, Florida and that the said newspaper has heretofore been continuously published in said Miami-Dade County, Florida each day (except Saturday, Sunday and Legal Holidays) and has been entered as second class mail matter at the post office in Miami in said Miami-Dade County, Florida, for a period of one year next preceding the first publication of the attached copy of advertisement, and affiant further says that he or she has neither paid nor promised any person, firm or corporation any discount, rebate, commission or refund for the purpose of securing this advertisement for publication in the said newspape

before me this Sworn to and subscribed

JUNE, A.D. 2017 day-of Max

(SEAL) MARIA MESA personally known to me #FF 034747

ALIC, STATE

CITY OF CORAL GABLES, FLORIDA NOTICE OF PUBLIC HEARING

City Public Hearing Dates/Times

Location

Local Planning Agency / Planning and Zoning Board Wednesday, July 12, 2017, 8:00 - 9:00 p.m. City Commission Chambers, City Hail, 405 Biltmore Way, Coral Gables, Florida, 33134

PUBLIC NOTICE is hereby given that the City of Coral Gables, Florida, Local Planning Agency (LPAV Planning and Zoning Board (PZB) will conduct Public Hearings on the following:

- An Ordinance of the City Commission of Coral Gables requesting vacation of a public alleyway pursuant to Zoning Code Article 3, Division 12, "Abandonment and Vacations" and City Code Chapter 62, Article 8, "Vacation, Abandonment and Closure of Streets, Easements and Alleys by Private Owners and the City; Application Process," providing for the vacation of the twenty (20) foot wide alley which is three-hundred (300) feet in length lying between Tracts A and B, Block 199, Riviera Section Part 14. Coral Gables, Florida; providing for an effective date.
- 2. An Ordinance of the City Commission of Coral Gables, Florida providing for a text amendment to the City of Coral Gables Official Zoning Code by amending Article 4, "Zoning Districts," Division 3, "Nonresidential Districts," Section 4/301, "Commercial Limited District" requiring conditional use review for medical clinics located within a Commercial Limited zoning district; providing for repealer provision, severability clause, codification, and providing for an effective date.
- 3. An Ordinance of the City Commission of Coral Gables, Florida providing for text amendments to the City of Coral Gables Official Zonling Code, by amending Article 4, "Zoning Districts," Section 4-201, "Mixed Use District (MXD);" Article 5, "Development Standards," Section 5-604, "Coral Gables Mediterranean Style Design Standards," and Section 5-1105, "Landscape Requirements;" and Article 8, "Definitions," to increase the requirements for landscaped open space and clarify what constitutes open space; providing for a repealer provision, providing for a severability clause, codification, and providing for an effective date.

All interested parties are invited to attend and participate. Upon recommendation by the Board, the applications will be scheduled for City Commission consideration. Please visit the City webpage at www.coraigables.com to view information concerning the applications. The complete applications are on file and available for examination during business hours at the Planning and Zoning Division, 427 Biltmore Way, Suite 201, Coral Gables, Florida, 33134. Questions and written comments can be directed to the Planning and Zoning Division at planning@coralgables.com (FAX: 305.460.5327) or 305.460.5211.

Ramon Trias Director of Planning and Zoning Planning & Zoning Division City of Coral Gables, Florida

Any person, who acts as a lobbyist pursuant to the City of Coral Gables Ordinance No. 2006-11, as amended, must register with the City Clerk prior to engaging in lobbying activities before City Staff, Boards, Committees or City Commission. A copy of the Ordinance is available in the Office of the City Clerk, City Heil. If a person decides to appeal any decision made by a Board, Committee or City Commission with respect to any matter considered at a meeting or hearing, that person will need to ensure that a verbatim record of the proceedings is made, which record includes the testimony and evidence upon which the appeal is to be based (F.S. 286.0105). Any meeting may be opened and continued and, under certain circumstances, additional legal notice will not be provided. Any person requiring special accommodations in order to attend or participate in the meeting should contact the City's ADA Coordinator, Raquel Elejabarneta (Email: relejabarneta@coralgables.com), Telephone: 305-722-8686, TTY/TDD: 305-442-1600, at least three (3) working days prior to the meeting. All meetings are telecast live on Coral Gables TV Channel 77.

City of Coral Gables Courtesy Public Hearing Notice

June 30, 2017

Property:	Riviera Plaza (1542 S. Dixie Highway), Coral Gables, Florida
Applicant:	Riviera Plaza Holdings LP
Application:	Alley Vacation
Public Hearing - Date/Time/ Location:	Planning and Zoning Board July 12, 2017, 6:00 — 9:00 p.m. City Commission Chambers, City Hall, 405 Biltmore Way, Coral Gables, Florida, 33134

PUBLIC NOTICE is hereby given that the City of Coral Gables, Florida, Planning and Zoning Board (PZB) will conduct a Public Hearing on July 12, 2017 on the following applications at the Coral Gables City Commission Chambers, City Hall, 405 Biltmore Way, Coral Gables, Florida.

An application has been submitted by Riviera Plaza Holdings LP to vacate a public alleyway measuring twenty (20) feet in width by three-hundred (300) feet in length lying in the rear portion of the property located at 1542 South Dixie Highway. The request requires two (2) public hearings, including review and recommendation by the Planning and Zoning Board, and approval via Resolution by the City Commission.

The Resolution under consideration is as follows:

An Ordinance of the City Commission of Coral Gables requesting vacation of a public alleyway pursuant to Zoning Code Article 3, Division 12, "Abandonment and Vacations" and City Code Chapter 62, Article 8, "Vacation, Abandonment and Closure of Streets, Easements and Alleys by Private Owners and the City; Application Process," providing for the vacation of the twenty (20) foot wide alley which is three-hundred (300) feet in length lying between Tracts A and B, Block 199, Riviera Section Part 14, Coral Gables, Florida; providing for an effective date.

All interested parties are invited to attend and participate. Please visit the City webpage at www.coralgables.com to view information concerning the application. The complete application is on file and available for examination during business hours at the Planning Division, 427 Biltmore Way, Suite 201, Coral Gables, Florida, 33134. Questions and written comments regarding the application can be directed to the Planning and Zoning Division at planning@coralgables.com, Fax: 305.460.5327 or Phone: 305.460.5211. Please forward to other interested parties.

Sincerely,

City of Coral Gables, Florida

Any person requiring special accommodations in order to attend or participate in the meeting should contact the City's ADA Coordinator, Raquel Elejabarrieta (Email: relejabarrieta@coralgables.com, Telephone: 305-722-8686, TTY/TDD: 305-442-1600, at least three (3) working days prior to the meeting. All meetings are telecast live on Coral Gables TV Channel 77.